Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:20:05.012Z Has data issue: false hasContentIssue false

14C Dating of Cremated Bones: The Issue of Sample Contamination

Published online by Cambridge University Press:  18 July 2016

Mark van Strydonck*
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Guy De Mulder
Affiliation:
Department of Archaeology, Ghent University, Blandijnberg 2, 9000 Ghent, Belgium
*
Corresponding author. Email: mark.vanstrydonck@kikirpa.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent comparative studies have proven the validity of radiocarbon dates of cremated bones. The issue of sample contamination has, however, been overlooked in most studies. Analyses of cremated bone samples has shown that in some cases, cremated bones are contaminated. This contamination is more distinct near the surface of the bones and depends on the compactness of the cremated bone as well as on the site conditions. δ13C is not a good estimator to discriminate between contaminated and uncontaminated bones. An acetic acid pretreatment is the most appropriate method to clean samples, but it is better to remove the surface and to avoid cremated bones that are not entirely white (cremation temp. <725 °).

Type
How Good Are 14C Ages of Bones? Problems and Methods Applied
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Ameryckx, J, Verheye, W, Vermeire, R. 1985. Bodemkunde. Ghent: De Sikkel. 255 p.Google Scholar
Barta, P, Štolc, S. 2007. HBCO correction: its impact on archaeological absolute dating. Radiocarbon 49(2):465–72.Google Scholar
Berger, R, Horney, AG, Libby, WF. 1964. Radiocarbon dating of bone and shell from their organic components. Science 144(3621):9991001.CrossRefGoogle ScholarPubMed
De Mulder, G, Rogge, M. 1995. Twee urnengrafvelden te Zottegem-Velzeke. Publicaties van het Provinciaal Archeologisch Museum van Zuid-Oost-Vlaanderen—site Velzeke. Gewone reeks 1. Zottegem, Publicaties van het Provinciaal Archeologisch Museum van Zuid-Oost-Vlaanderen—site Velzeke. 112 p.Google Scholar
De Mulder, G, Van Strydonck, M. 2004. Radiocarbon dates of two urnfields at Velzeke (Zottegem, East Flanders, Belgium). In: Higham, T, Bronk Ramsey, C, Owen, C, editors. Radiocarbon and Archaeology. Proceedings of the 4th Symposium, Oxford, 2002. Oxford: Oxbow. p 247–62.Google Scholar
De Mulder, G, Van Strydonck, M, Boudin, M, Lerclercq, W, Paridaens, N, Warmenbol, E. 2007. Re-evaluation of the late Bronze Age and early Iron Age chronology of the western Belgian urnfields based on 14C dating of cremated bones. Radiocarbon 49(2):499514.Google Scholar
De Mulder, G, Van Strydonck, M. 2008. Een 14C-datering van het urnengrafveld te Kontich/Duffelsesteenweg (provincie Antwerpen, België). Lunula. Archaeologia Protohistorica 13:310.Google Scholar
De Mulder, G, Van Strydonck, M, Boudin, M. 2009. The impact of cremated bone dating on the archaeological chronology of the Low Countries. Radiocarbon 51(2). These proceedings. Google Scholar
Fullola, JM, Guerrero, VM, Petit, , Calvo, M, Malgosa, A, Armentano, N, Arnau, P, Cho, S. 2007. La Cova de Pas (Ferreries, Menorca): un avanç. L'Arqueologia à Menorca: eina per al coneixement del passat. Libres del patrimoni històric i cultural. Consell Insular de menorca. Menorca. p 95110.Google Scholar
Geyh, MA. 2001. Bomb radiocarbon dating of animal tissues and hair. Radiocarbon 43(2B):723–30.CrossRefGoogle Scholar
Hassan, AA, Termine, JD, Haynes, CV. 1977. Mineralogical studies on bone apatite and their implications for radiocarbon dating. Radiocarbon 19(3):364–74.CrossRefGoogle Scholar
Haynes, V. 1968. Radiocarbon: analysis of inorganic carbon of fossil bone and enamel. Science 161(3842):687–8.Google Scholar
Herrman, B, Grupe, G, Hummel, S, Piepenbrink, H, Schutkowski, IH. 1990. Prähistorische Anthropologie. Leitfaden der Feld- und Labormethoden. Berlin: Springer. 445 p.CrossRefGoogle Scholar
Holden, JL, Phakey, PP, Clement, JG. 1995a. Scanning electron microscope observations of incinerated human femoral bone: a case study. Forensic Science International 74:1728.CrossRefGoogle ScholarPubMed
Holden, JL, Phakey, PP, Clement, JG. 1995b. Scanning electron microscope observations of heat-treated human bone. Forensic Science International 74:2945.CrossRefGoogle ScholarPubMed
Koch, PL, Tuross, N, Fogel, ML. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24(5):417–29.Google Scholar
Krueger, HW. 1991. Exchange of carbon with biological apatite. Journal of Archaeological Science 18(3):355–61.Google Scholar
Lanting, JN, van der Plicht, J. 1996. Wat hebben Floris V, skelets Swifterband S2 en visotters gemeen? Palaeohistoria 37/38:491519.Google Scholar
Lanting, JN. Brindley, AL. 1998. Dating cremated bone: the dawn of a new era. Journal of Irish Archaeology 9:17.Google Scholar
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249–54.Google Scholar
Lee-Thorp, JA, van der Merwe, NJ. 1991. Aspects of the chemistry of modern and fossil biological apatites. Journal of Archaeological Science 18(3):343–54.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon analysis. Nature 230(5291):241–2.Google Scholar
Mays, S. 1998. The Archaeology of Human Bones. London: Routledge. 242 p.Google Scholar
McKinley, JI. 1997. The cremated human bone from burials and cremation-related contexts. In: Fitzpatrick, AP. Westhampnett, West Sussex, Volume 2. The Iron Age, Romano-British and Anglo-Saxon Cemeteries Excavated in 1992. Report No. 12. Salisbury: Trust for Wessex Archaeology. p 5572.Google Scholar
Munro, LE, Longstaffe, FJ, White, CD. 2007. Burning and boiling of modern deer bone: effects on crystallinity and oxygen isotope composition of bioapatite phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 249(1–2):90102.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM, Schliecher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Naysmith, P, Scott, EM, Cook, GT, Heinemeier, J, van der Plicht, J, Van Strydonck, M, Bronk Ramsey, C, Grootes, PM, Freeman, SPHT. 2007. A cremated bone intercomparison study. Radiocarbon 49(2):403–8.Google Scholar
Neuman, WF. 1980. Bone mineral and calcification mechanisms. In: Urist, MR, editor. Fundamental and Clinical Bone Physiology. Philadelphia: J.B. Lippincott. p 83107.Google Scholar
Neuman, WF, Neuman, MW. 1958. The Chemical Dynamics of Bone Mineral. Chicago: University of Chicago Press.Google Scholar
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Hornstrup, KM, Thrane, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.Google Scholar
Person, A, Bocherens, H, Saliège, J-F, Paris, F, Zeitoun, V, Gérard, M. 1995. Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science 22(2):211–21.CrossRefGoogle Scholar
Petit i Mendizàbal, ÀM. 1989. Can Missert, una necropolis del Bronze Final al Vallès. Terme 4:711.Google Scholar
Posner, AS. 1969. Crystal chemistry of bone mineral. Physiological Reviews 49(4):760–92.CrossRefGoogle ScholarPubMed
Saliège, J-F, Person, A, Paris, F. 1995. Preservation of 13C/12C original ratio and 14C dating of mineral fraction of human bones from Saharan tombs, Niger. Journal of Archaeological Science 22(2):301–12.Google Scholar
Shipman, P, Foster, GF, Schoeninger, M. 1984. Burnt bones and teeth: an experimental study of colour, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11(4):307–25.CrossRefGoogle Scholar
Tamers, MA, Pearson, FJ. 1965. Validity of radiocarbon dates on bone. Nature 208(5015):1053–5.Google Scholar
Van Strydonck, M, van der Borg, K. 1990–91. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin Koninklijk Instituut voon het Kunstpatrimonium 23:228–34.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Maréchal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702–10.Google Scholar
Van Strydonck, M, Boudin, M, Hoefkens, M, De Mulder, G. 2005. 14C-dating of cremated bones, why does it work? Lunula. Archaeologia Protohistorica 16:61–3.Google Scholar
Van Strydonck, M, Boudin, M, Guerrero Ayuso, VM. In press. The necessity of sample quality assessment in 14C AMS dating: the case of Cova des Pas (Menorca, Spain). Paper presented at the 11th International Conference on Accelerator Mass Spectrometry (AMS). Rome, Italy, 14–19 September 2008.Google Scholar