Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:17:49.990Z Has data issue: false hasContentIssue false

The 2000 Radiocarbon Varve/Comparison Issue

Published online by Cambridge University Press:  18 July 2016

Johannes van der Plicht*
Affiliation:
Centre for Isotope Research, Radiocarbon Laboratory, Groningen University, Nijenborgh 4, 9747 AG Groningen, the Netherlands. Email: plicht@phys.rug.nl
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For radiocarbon calibration, the arrow of time is pointing backwards but the entropy does not necessarily decrease in this direction…

Type
Introduction
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Abeyratne, M, Spooner, NA, Grün, R, Head, J. 1997. Multidating studies of Batadomba cave, Sri Lanka. Quaternary Science Reviews 16:243–55.CrossRefGoogle Scholar
Aitken, M. 1990. Science based dating archaeology. UK: Longman House.Google Scholar
Aldahan, A, Possnert, G. 1998. A high resolution 10Be profile from deep sea sediment covering the last 70 ka: indication for globally synchronized environmental events. Quaternary Geochronology 17:1023–32.Google Scholar
Barbetti, M. 1980. Geomagnetic strength over the last 50,000 years and changes in atmospheric 14C concentration: emerging trends. Radiocarbon 22(2):192–9.CrossRefGoogle Scholar
Bard, E. 1997. Nuclide production by cosmic rays during the Last Ice Age. Science 277:532–3.CrossRefGoogle Scholar
Bard, E. 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta 62:2025–38.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3): 1085–92.CrossRefGoogle Scholar
Bar-Yosef, O. 2000. The impact of radiocarbon dating on old world Archaeology: past achievements and future expectations. Radiocarbon 42(1):2339.CrossRefGoogle Scholar
Baumgartner, S, Beer, J, Masarik, J, Wagner, G, Meynadier, L, Synal, HA. 1998. Geomagnetic modulation of the 36Cl flux in the GRIP ice core. Science 279:1330–2.CrossRefGoogle ScholarPubMed
Beck, W, Richards, D, Herrera, S, Calsoyas, L, Donahue, D, Edwards, L, Smart, P, Burr, G, Jull, AJT. 2000. 230Th and 14C dating of speleothems from the Bahamas: implications for calibration of the Radiocarbon timescale to 45 ka BP. Abstract. 17th International Radiocarbon Conference, Israel. June 2000.Google Scholar
Bell, WT. 1991. Thermoluminescence dates for the Lake Mungo Aboriginal fireplaces and the implications for radiocarbon dating. Archaeometry 33:4350.CrossRefGoogle Scholar
Bischoff, JL, Ludwig, K, Garcia, JF, Carbonell, E, Vaquero, M, Stafford, TW, Jull, AJT. 1994. Dating of the basal Aurignacian sandwich at Abric Romani (Catalunya, Spain) by radiocarbon and uranium-series. Journal of Archaeological Science 21:541–51.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Taylor, FW, Récy, J, Edwards, RL, Cabioch, G, Corrège, T, Donahue, DJ, O'Malley, JM. 1998. A high resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from espiritu Santo Island, Vanuatu. Radiocarbon 40(3):1093–105.CrossRefGoogle Scholar
Castagnoli, CG, Albrecht, A, Beer, J, Bonino, G, Shen, C, Callegari, E, Taricco, C, Ditrich-Hannen, B, Kubik, P, Suter, M, Zhu, GM. 1995. Evidence for enhanced 10Be deposition in Mediterranean sediments 35 kyr BP. Geophysical Research Letters 22:707–10.CrossRefGoogle Scholar
Chappell, J, Veeh, HH. 1978. 230Th/234U age support of an interstadial sea level of −40m at 30,000 yr BP. Nature 276:602–4.CrossRefGoogle Scholar
de Geer, G. 1912. A geochronology of the last 12,000 years. C R 11th International Geological Congres 1910. Stockholm. p 241–53.Google Scholar
Farrand, WR. 1994. Confrontation of geological stratigraphy and radiometric dates from Upper Pleistocene sites in the Levant. In: Bar-Yosef, O, Kra, RS, editors. Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean. Tucson: Radiocarbon. p 3353.Google Scholar
Frank, M. 2000. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200,000 years. Phil. Trans. Royal Society of London A358:1089–107.Google Scholar
Geyh, MA, Schlüchter, C. 1998. Calibration of the 14C time scale beyond 22,000 BP. Radiocarbon 40(1):475–82.Google Scholar
Goslar, T. 1998. Floating varve chronology of Lake Gosciaz. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gosciaz, central Poland, a monographic study. Polish Academy of Sciences. p 97.Google Scholar
Guyodo, Y, Valet, JP. 1996. Relative variations in geomagnetic intensity from sedimentary records: the past 200 thousand years. Earth and Planetary Science Letters 143:2336.CrossRefGoogle Scholar
Hajdas, I, Zolitschka, B, Ivy-Ochs, SD, Beer, J, Bonani, G, Leroy, SAG, Negendank, JW, Ramrath, M, Suter, M. 1995. AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany. Quaternary Science Reviews 14:137–43.CrossRefGoogle Scholar
Hajdas, I, Ivy, SD, Beer, J, Bonani, G, Imboden, D, Lotter, AF, Sturm, M, Suter, M. 1993. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years B P. Climate Dynamics 9:107–16.CrossRefGoogle Scholar
Holmgren, K, Lauritzen, SE, Possnert, G. 1994. 230Th/234U and 14C dating of a Late Pleistocene stalagmite in Lobatse II cave, Botswana. Quaternary Geochronology 13:111–9.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC, Alley, R, Sigman, DM. 1998a. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC. 1998b. A new 14C calibration dataset for the Last Deglaciation based on marine varves. Radiocarbon 40(1):483–94.Google Scholar
Huxtable, J, Aitken, MJ. 1977. Thermoluminescent dating of Lake Mungo geomagnetic polarity excursion. Nature 265:40–1.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998a. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science 279:1187–90.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998b. A 40,000 year varve chronology from Lake Suigetsu, Japan: extension of the 14C calibration curve. Radiocarbon 40(1):505–15.Google Scholar
Kromer, B, Spurk, M, Remmele, S, Barbetti, M, Toniello, V. 1998. Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring series. Radiocarbon 40(1):351–8.Google Scholar
Kromer, B, Spurk, M. 1998. Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal B P. Radiocarbon 40(3):1117–25.CrossRefGoogle Scholar
Lin, JC, Broecker, WS, Anderson, RF, Hemming, S, Rubenstone, JL, Bonani, G. 1996. New 230Th/U and 14C Ages from lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial Thorium. Geochimica et Cosmochimica Acta 60:2817–32.CrossRefGoogle Scholar
Lin, JC, Broecker, WS, Hemming, SR, Hajdas, I, Anderson, RF, Smith, GI, Kelley, M, Bonani, G. 1998. A reassessment of U-Th and 14C ages for Late Glacial High-Frequency Hydrological Events at Searles Lake, California. Quaternary Research 49:1123.CrossRefGoogle Scholar
Lomitschka, M, Mangini, A. 1999. Precise Th/U-dating of small and heavily coated samples of deep sea corals. Earth and Planetary Science Letters 170:391401.CrossRefGoogle Scholar
McHargue, LR, Damon, PE, Donahue, DJ. 1995. Enhanced cosmic-ray production of 10Be coincident with the Mono Lake and Laschamp geomagnetic excursions. Geophysical Research Letters 22:659–62.CrossRefGoogle Scholar
Mellars, P. 2000. Châtelperronian chronology and the case for the Neanderthal/modern human ‘acculturation’ in western europe. Current Anthropology. Forthcoming.Google Scholar
Mellars, P, Otte, M, Straus, L, Zilhao, J, D'Errico, F. 1999. The Neanderthal problem, continued. CA forum on theroy in Anthropology. Current Anthropology 40(3):341–64.CrossRefGoogle Scholar
Mook, WG. 1986. Business meeting (12th International Radiocarbon Conference). Radiocarbon 28(2A):799.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.CrossRefGoogle Scholar
Prescott, JR, Smith, MA. 1993. Comparison of thermoluminescence and 14C dates as an indicator of cosmic ray intensity variations. Papers of the 23rd International Cosmic Ray Conference. Calgary. p 838–41.Google Scholar
Raisbeck, GM, Yiou, F, Fruneau, M, Loiseaux, JM, Lieuvin, M, Ravel, JC, Lorius, C. 1981. Cosmogenic 10Be concentrations in Antartic ice during the past 30,000 years. Nature 292:825–6.CrossRefGoogle Scholar
Readhead, ML. 1988. Thermoluminescence dating study of quartz in aeolian sediments from Southeastern Australia. Quaternary Science Reviews 7:257–64.CrossRefGoogle Scholar
Renne, PR, Karner, DB, Ludwig, KR. 1998. Absolute ages aren't exactly. Science 282:1840–1.CrossRefGoogle Scholar
Richter, D, Waiblinger, J, Rink, WJ, Wagner, GA. 2000. Thermoluminescence, electron spin resonance and 14C-dating of the Late Middle and Early Upper Palaeolithic site of Geissenklösterle Cave in southern Germany. Journal of Archaeological Science 27:7189.CrossRefGoogle Scholar
Roberts, RG, Jones, R, Smith, MA. 1990. Thermoluminescence dating of a 50,000 year old human occupation site in northern Australia. Nature 345:153–6.CrossRefGoogle Scholar
Sikes, EL, Samson, CR, Guilderson, TP, Howard, WR. 2000. Old Radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405:555–9.CrossRefGoogle ScholarPubMed
Southon, J, Hughen, K, Herring, C, Lehman, S, Overpeck, J. 2000. A detailed 14C calibration for the Bølling-Allerød-Younger Dryas. Abstract. 17th International Radiocarbon Conference, Israel. June 2000.Google Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, H, Kromer, B. 1998. Revisions and extensions of the Hohenheim Oak and Pine chronologies: new evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3):1107–16.CrossRefGoogle Scholar
Stuiver, M. 1970. Long term 14C variations. In: Olsson, IU, editor. Radiocarbon Variations And Absolute Chronology. Proceedings of the 12th Nobel Symposium; 1970; Uppsala University, Sweden. p 197213.Google Scholar
Stuiver, M, Kromer, B, Becker, B, Ferguson, CW 1986. Radiocarbon age calibration back to 13,300 years BP and the 14C age matching of the German Oak and US Bristlecone Pine chronologies. Radiocarbon 28(2B):969–79.CrossRefGoogle Scholar
Stuiver, M, Kra, RS, editors. 1986. Calibration issue. Radiocarbon 28(2B):8051030.CrossRefGoogle Scholar
Stuiver, M, Long, A, Kra, RS, editors. 1993. Calibration issue. Radiocarbon 35(1):1244.CrossRefGoogle Scholar
Stuiver, M, van der Plicht, J, editors. 1998. INTCAL98, Calibration issue. Radiocarbon 40(3):1041–164.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–84.CrossRefGoogle Scholar
Tauber, H. 1970. The Scandinavian varve chronology and C14 dating. In: Olsson, IU, editor. Radiocarbon variations and absolute chronology. Proceedings of the 12th Nobel Symposium; 1970; Uppsala University. p 173–96.Google Scholar
van Andel, TH. 1998. Middle and Upper Paleolithic environments and the calibration of 14C dates beyond 10,000 BP. Antiquity 72:2633.CrossRefGoogle Scholar
Voelker, AHL, Sarnthein, M, Grootes, PM, Erlenkeuser, H, Laj, C, Mazaud, A, Nadeau, MJ, Schleicher, M. 1998. Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: implications for the 14C calibration beyond 25 ka BP. Radiocarbon 40(1):517–34.Google Scholar
Vogel, JC, Kronfeld, J, 1997. Calibration of radiocarbon dates for the Late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39(1):2732.CrossRefGoogle Scholar
Wagner, G, Beer, J, Laj, C, Kissel, C, Masarik, J, Muscheler, R, Synal, HA. 2000. Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core. Earth and Planetary Science Letters 181:16.CrossRefGoogle Scholar
Wohlfarth, B. 1996. The chronology of the Last Termination: a review of high-resolution terrestrial stratigraphies. Quaternary Science Reviews 15:267–84.CrossRefGoogle Scholar
Yiou, F, Raisbeck, GM, Baumgartner, S, Beer, J, Hammer, C, Johnsen, S, Jouzel, J, Kubik, P, Lestringuez, J, Stievenard, M, Suter, M, Yiou, P. 1997. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. Journal of Geophysical Research 102(C12):26,78394.CrossRefGoogle Scholar
Zbinden, H, Andree, M, Oeschger, H, Ammann, B, Lotter, A, Bonani, G, Wölfli, W 1989. Atmospheric radiocarbon at the end of the Last Glacial: an estimate based on AMS radiocarbon dates on terrestrial macrofossils from lake sediments. Radiocarbon 31(3):795804.CrossRefGoogle Scholar
Zhu, R, Pan, Y, Liu, Q. 1999. Geomagnetic excursions recorded in Chinese loess in the last 70,000 years. Geophysical Research Letters 26(4):505–8.CrossRefGoogle Scholar