Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T06:52:14.734Z Has data issue: false hasContentIssue false

THE BEGINNING AND EARLY YEARS OF RADIOCARBON DATING IN RUSSIA: LABORATORIES AND PERSONALITIES

Published online by Cambridge University Press:  25 August 2021

Yaroslav V Kuzmin*
Affiliation:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk630090, Russia
Natalia D Burova
Affiliation:
Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg191186, Russia
Elya P Zazovskaya
Affiliation:
Institute of Geography, Russian Academy of Sciences, Moscow119017, Russia
Nataliya E Zaretskaya
Affiliation:
Institute of Geography, Russian Academy of Sciences, Moscow119017, Russia Geological Institute, Russian Academy of Sciences, Moscow119017, Russia
Arkady B Savinetsky
Affiliation:
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow119071, Russia
Bulat F Khasanov
Affiliation:
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow119071, Russia National Research University, Higher School of Economics, Moscow109028, Russia
*
*Corresponding author. Emails: kuzmin@fulbrightmail.org; kuzmin_yv@igm.nsc.ru

Abstract

We present an overview of the beginning and early years of radiocarbon dating in Russia. Achievements of several major scholars in this field from Leningrad (St. Petersburg), Moscow and Novosibirsk are briefly described. The existing and closed Russian laboratories are also mentioned.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrovskiy, AL, Chichagova, OA. 1998. The 14C age of humic substances in paleosols. Radiocarbon 40(2):991997.CrossRefGoogle Scholar
Arslanov, KA. 1993. Late Pleistocene geochronology of European Russia. Radiocarbon 35(3):421427.CrossRefGoogle Scholar
Arslanov, KA, Saveljeva, LA, Gey, NA, Klimanov, VA, Chernov, SB, Chernova, GM, Kuzmin, GF, Tertychnaya, TV, Subetto, DA, Denisenkov, VP. 1999. Chronology of vegetation and paleoclimatic stages of northwestern Russia during the Late Glacial and Holocene. Radiocarbon 41(1):2545.CrossRefGoogle Scholar
Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387391.CrossRefGoogle Scholar
Arslanov, KA, Tertychnaya, TV, Chernov, SB. 1993. Problems and methods of dating low-activity samples by liquid scintillation counting. Radiocarbon 35(3):393398.CrossRefGoogle Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.CrossRefGoogle ScholarPubMed
Braitseva, OA, Ponomareva, VV, Sulerzhitsky, LD, Melekestsev, IV, Bailey, J. 1997. Holocene key-marker tephra layers in Kamchatka, Russia. Quaternary Research 47(2):125139.CrossRefGoogle Scholar
Braitseva, OA, Sulerzhitsky, LD. 2007. Radiocarbon laboratory of the Institute of Volcanology of Far Eastern Branch of the USSR Academy of Sciences. In: Zaitseva GI, Kulkova MA, editors. Radiocarbon in archaeological and paleoenvironmental research. Teza Print: St. Petersburg. p. 89–93. In Russian with English summary.Google Scholar
Braitseva, OA., Sulerzhitsky, LD, Litasova, SN, Melekestsev, IV, Ponomareva, VV. 1993. Radiocarbon dating and tephrochronology in Kamchatka. Radiocarbon 35(3):463476.CrossRefGoogle Scholar
Burchuladze, AA. 1968. Tbilisi radiocarbon dates I. Radiocarbon 10(2):466467.CrossRefGoogle Scholar
Burchuladze, AA, Chudý, M, Eristavi, IV, Pagava, SV, Povinec, P, Ivo, A, Togonidze, GI. 1989. Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31(3):771776.CrossRefGoogle Scholar
Burchuladze, AA, Pagava, SV, Povinec, P, Togonidze, GI, Usačev, S. 1980. Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287(5780):320322.CrossRefGoogle Scholar
Burchuladze, AA, Pagava, SV, Togonidze, GI, Avtandilashvili, MV. 1993. Radiocarbon and 11-year variations of cosmic rays. Radiocarbon 35(3):347350.CrossRefGoogle Scholar
Butomo, SV. 1965. Radiocarbon dating in the Soviet Union. Radiocarbon 7:223228.CrossRefGoogle Scholar
Cherkinsky, AE. 1981. Recent theories of humifications and radiocarbon research of some types of soils. Doklady Akademii Nauk SSSR 258(4):993996. In Russian with English title.Google Scholar
Chichagova, OA. 1985. Radiocarbon dating of humus of soils: methods and applications in pedology and paleogeography. Nauka: Moscow. 155 p. In Russian with English title.Google Scholar
Chichagova, OA. 1996. Modern trends in radiocarbon studies of organic matter of soils. Eurasian Soil Science 29(1):89100.Google Scholar
Chichagova, OA. 2005. Absolute and relative ages of soils from radiocarbon dating: development of I.P. Gerasimov’s ideas. Eurasian Soil Science 38(12):12771285.Google Scholar
Chichagova, O, Cherkinsky, A. 1993. Problems in radiocarbon dating of soils. Radiocarbon 35(3):351362.CrossRefGoogle Scholar
Damon, PE, Kaimei, D, Kocharov, GE, Mikheeva, IB, Peristykh, AN. 1995. Radiocarbon production by the Gamma-ray component of supernova explosions. Radiocarbon 37(2):599604.CrossRefGoogle Scholar
Dergachev, VA. 1980. Experimental and theoretical data on radiocarbon variation in the Earth’s atmosphere in the past. Radiocarbon 22(2):328336.CrossRefGoogle Scholar
Dergachev, VA. 2015. Solar activity, cosmic rays, and earth temperature reconstructions for the past two millennia. Part 1. Analysis of temperature reconstructions. Geomagnetism and Aeronomy 55(1):112.CrossRefGoogle Scholar
Dergachev, VA. 2019. Global pattern of temperature variability in Greenland and Antarctica and the cooling trend in the last millennia. Geomagnetism and Aeronomy 59(7):918925.CrossRefGoogle Scholar
Dergachev, VA, Kocharov, GE. 1980. Natural processes and time fluctuations in the radiocarbon concentration of the atmosphere. Radiocarbon 22(2):236244.CrossRefGoogle Scholar
Dervachev, V, Ostrykov, V, Gladysheva, O, Koudriavtsev, I, Ogurtsov, M. 2008. Grant Kocharov (obituary). Radiocarbon 50(1):vvii.Google Scholar
Dergachev, VA, Vasiliev, SS, Sementsov, AA, Zaitseva, GI, Chugunov, KA, Sljusarenko, IJ. 2001. Dendrochronology and radiocarbon dating methods in archaeological studies of Scythian sites. Radiocarbon 43(2A):417424.CrossRefGoogle Scholar
Dergachev, VA, Volobuev, DM. 2018. Solar radiation change and climatic effects on decennial–centennial scales. Geomagnetism and Aeronomy 58(8):10421049.CrossRefGoogle Scholar
Dinesman, LG. 1965. Age determination of small biological objects by radiocarbon. Bulletin of Moscow Society of Naturalists, Biological Series 70(6):131142. In Russian with English title.Google Scholar
Dinesman, LG. 1967. Studies on Holocene soil formation in animal burrows. Soviet Soil Science 4:7685.Google Scholar
Dinesman, LG. 1971. Mammalian lairs in paleoecological studies and palynology. Journal of Palynology 7:4855.Google Scholar
Dinesman, LG, Kiseleva, NK, Knyazev, AV. 1989. History of steppe ecosystems of Mongolia. Nauka: Moscow. 213 p. In Russian with English title.Google Scholar
Dinesman, LG, Kiseleva, NK, Savinetsky, AB, Khassanov, BF. 1999. Secular dynamics of coastal zone ecosystems of the north-eastern Chukchi Peninsula. Mo Vince Verlag: Tubingen. 129 p.Google Scholar
Dinesman, LG, Savinetsky, AB. 2003. Secular dynamics of the prehistoric catch and population size of baleen whales off the Chukchi Peninsula, Siberia. In: McCartney AP, editor. Indigenous ways to the present: native whaling in the Western Arctic. Canadian Circumpolar Institute Press: Edmonton. p. 137–166.Google Scholar
Dolukhanov, PM, Romanova, EN, Sementsov, AA. 1970. Radiocarbon dates of the Institute of Archaeology II. Radiocarbon 12(1):130155.CrossRefGoogle Scholar
Firsov, LV. 1975. Experience of radiocarbon dating of binding whitewashes. Doklady Akademii Nauk SSSR 221(5):11851188. In Russian with English title.Google Scholar
Firsov, LV. 1976. Essays on radiocarbon chronology of the Tauric Chersonese. Nauka: Novosibirsk. 222 p. In Russian with English title.Google Scholar
Firsov, LV, Troitsky, SL, Levina, TP, Nikitin, VP, Panychev, VA. 1974. The absolute age and the first standard pollen diagram for the Holocene of Siberia. Bulletin of the Commission for the Study of Quaternary 41:121127. In Russian with English title.Google Scholar
Gerasimov, IP, Chichagova, OA. 1971. Some problems of radiocarbon dating of soil humus. Pochvovedenie 10:311. In Russian with English title.Google Scholar
Glushankova, NI, Parunin, OB, Timashkova, TA, Khait, VZ, Shlukov, AI. 1980. Moscow MV Lomonosov State University radiocarbon dates I. Radiocarbon 22(1):8290.CrossRefGoogle Scholar
Kocharov, GE, Blinov, AV, Konstantinov, AN, Levchenko, VA. 1989. Temporal 10Be and 14C variations: a tool for paleomagnetic research. Radiocarbon 31(2):163168.CrossRefGoogle Scholar
Konstantinov, BP, Kocharov, GE. 1965. Astrophysical events and radiocarbon. Doklady Akademii Nauk SSSR 165(1):6364. In Russian with English title.Google Scholar
Koudriavtsev, IV, Kocharov, GE, Ogurtsov, MG, Jungner, H. 2003. Long-term modulation of galactic cosmic rays in the heliosphere by curvature of the interplanetary magnetic field. Solar Physics 215:385394.CrossRefGoogle Scholar
Kuzmin, YV. 2009. Radiocarbon and Old World archaeology: shaping a chronological framework. Radiocarbon 51(1):149172.CrossRefGoogle Scholar
Kuzmin, YV, Orlova, LA. 2004. Radiocarbon chronology and environment of woolly mammoth (Mammuthus primigenius Blum.) in northern Asia: Results and perspectives. Earth-Science Reviews 68(1–2):133169.CrossRefGoogle Scholar
Kuzmin, YV, van der Plicht, J, Sulerzhitsky, LD. 2014. Puzzling radiocarbon dates for the Upper Paleolithic site of Sungir (Central Russian Plain). Radiocarbon 56(2):451459.CrossRefGoogle Scholar
Lavrukhina, AK, Alexeev, VA. 1977. Laboratory of Cosmochemistry radiocarbon measurements I. Radiocarbon 19(1):1218.CrossRefGoogle Scholar
Levina, TP, Orlova, LA. 1993. Holocene climatic rhythms of southern West Siberia. Russian Geology and Geophysics 34(3):3651.Google Scholar
Libby, WF, Anderson, EC, Arnold, JR. 1949. Age determination by radiocarbon content: worldwide assay of natural radiocarbon. Science 109(2827):227228.CrossRefGoogle Scholar
Liiva, A, Ilves, E, Punning, JM. 1966. Tartu radiocarbon dates I. Radiocarbon 8:430441.CrossRefGoogle Scholar
Long, A, Punning, J-M, editors. 1993. Application of radiocarbon dating in Eastern Europe and Siberia (Special Issue). Radiocarbon 35(3):347510.Google Scholar
Neyshtadt, MI, Firsov, LV, Orlova, LA, Panychev, VA. 1974. Some peculiarities of Holocene processes in Western Siberia. Geoforum 5(1):7783.CrossRefGoogle Scholar
Nikolskiy, PA, Sulerzhitsky, LD, Pitulko, VV. 2011. Last straw versus blitzkrieg overkill: climate-driven changes in the Arctic Siberian mammoth population and the Late Pleistocene extinction problem. Quaternary Science Reviews 30(17–18):23092328.CrossRefGoogle Scholar
Noakes, J, Kim, S, Akers, L. 1967. Recent improvements in benzene chemistry for radiocarbon dating. Geochimica et Cosmochimica Acta 31(6):10941096.CrossRefGoogle Scholar
Ogurtsov, MG, Nagovitsyn, YA, Kocharov, GE, Jungner, H. 2002. Long-period cycles of the Sun’s activity recorded in direct solar data and proxies. Solar Physics 211:371394.CrossRefGoogle Scholar
Orlova, LA. 1986. The Holocene of the Baraba steppe. Stratigraphy and radiocarbon chronology. Nauka: Novosibirsk. 128 p. In Russian with English title.Google Scholar
Orlova, LA, Kuzmin, YV, Dementiev, VN. 2004. A review of the evidence for extinction chronologies for five species of Upper Pleistocene megafauna in Siberia. Radiocarbon 46(1):301314.CrossRefGoogle Scholar
Orlova, LA, Kuzmin, YV, Zolnikov, ID. 1998. 14C database and geographic information system for western Siberia. Radiocarbon 40(1):319329.Google Scholar
Orlova, LA, Panychev, VA. 1993. The reliability of radiocarbon dating buried soils. Radiocarbon 35(3):369377.CrossRefGoogle Scholar
Panychev, VA. 1979. The radiocarbon chronology of the alluvial sediments on the Altai piedmont plain. Nauka: Novosibirsk. 103 p. In Russian with English title.Google Scholar
Pokrovsky, BG, Pevzner, MM, Zaretskaya, NE, Kuzmin, YV, Ineshin, EM. 2012. Obituary: Leopold Dmitrievich Sulerzhitsky (1929–2012). Radiocarbon 54(1):vx.CrossRefGoogle Scholar
Povinec, P, Burchuladze, AA, Pagava, SV. 1983. Short-term variations in radiocarbon concentration with the 11-year solar cycle. Radiocarbon 25(2):259266.CrossRefGoogle Scholar
Praslov, ND, Sulerzhitsky, LD. 1999. New data on the chronology of Paleolithic sites in Kostenki-on-Don. Doklady Earth Sciences 365(2):196200.Google Scholar
Punning, JM, Kakum, T, Rajamäe, R. 1973. Tallinn radiocarbon dates I. Radiocarbon 15(3):586591.CrossRefGoogle Scholar
Scott, EM, Naysmith, P, Cook, GT. 2018. Why do we need 14C inter-comparisons?: the Glasgow 14C intercomparison series, a reflection over 30 years. Quaternary Geochronology 43:7282.CrossRefGoogle Scholar
Sementsov, AA, Dolukhanov, PM, Romanova, EN, Timofeev, VI. 1972. Radiocarbon dates of the Institute of Archaeology III. 1 July 1967–1 July 1969. Radiocarbon 14(2):336367.Google Scholar
Sementsov, AA, Zaitseva, GI, Görsdorf, J, Nagler, A, Parzinger, H, Bokovenko, NA, Chugunov, KV, Lebedeva, LM. 1998. Chronology of the burial finds from Scythian monuments in southern Siberia and Central Asia. Radiocarbon 40(2):713720.CrossRefGoogle Scholar
Stuart, AJ, Sulerzhitsky, LD, Orlova, LA, Kuzmin, YV, Lister, AM. 2002. The latest woolly mammoths (Mammuthus primigenius Blumenbach) in Europe and Asia: a review of the current evidence. Quaternary Science Reviews 21(14–15):15591569.CrossRefGoogle Scholar
Sulerzhitsky, LD. 1970. Radiocarbon dating of volcanoes. Bulletin Volcanologique 35(1):8594.CrossRefGoogle Scholar
Sulerzhitsky, LD, Romanenko, FA. 1999. The “twilight” of the mammoth fauna in the Asiatic Arctic. Ambio 28(3):251255.Google Scholar
Timofeev, VI, Zaitseva, GI. 1999. On the problem of the Neolithisation of Eastern Europe and the position of the south Russian area in this process. Mémoires de la Societé Préhistorique Française 26:189202.Google Scholar
van der Plicht, J, Shishlina, NI, Zazovskaya, EP. 2016. Radiocarbon dating: chronology of archaeological cultures and reservoir effect. Paleograf Press: Moscow. 112 p. In Russian with English title.Google Scholar
Veksler, V, Sulerzhitsky, L, Arslanov, H, Punning, J-M. 1988. A standard sample for 14C-specific β activity. Radiocarbon 30(3):389–90.CrossRefGoogle Scholar
Veksler, VS. 1989. Radiocarbon dates of Riga I. Radiocarbon 31(1):3745.CrossRefGoogle Scholar
Vinogradov, AP, Devirts, AL, Dobkina, EI, Markova, NG. 1966. Radiocarbon dating in the Vernadsky Institute I–IV. Radiocarbon 8:292323.CrossRefGoogle Scholar
Zaitseva, GI. 2013. Laboratory of archaeological technology: history of its creation and present situation. In: Nosov EN, editor. Academic archaeology on the banks of the Neva River (from RAHMC to IHMC RAS, 1919–2014). Dmitry Bulanin Press: St. Petersburg. p. 261–279. In Russian with English title.Google Scholar
Zaitseva, GI, Chugunov, KV, Alekseev, AY, Dergachev, VA, Vasiliev, SS, Sementsov, AA, Cook, G, Scott, EM, van der Plicht, J, Parzinger, H, Nagler, A, Jungner, H, Sonninen, E, Bourova, ND. 2007. Chronology of key barrows belonging to different stages of the Scythian period in Tuva (Arzhan-1 and Arzhan-2 barrows). Radiocarbon 49(2):645658.CrossRefGoogle Scholar
Zaitseva, GI, Dergachev, VA. 2009. Radiocarbon chronology of the Neolithic sites from the Boreal zone of European Russia and environmental changes based on the last proxy data. Quaternary International 203:1924.CrossRefGoogle Scholar
Zaitseva, GI, Popov, SG, Krylov, AP, Knorozov, YV, Spevakovskiy, AB. 1993. Radiocarbon chronology of archaeological sites of the Kurile Islands. Radiocarbon 35(3):507510.CrossRefGoogle Scholar
Zaitseva, GI, Sementsov, AA, Sulerzhitsky, LD. 2007. Some aspects from the history of creation of the first radiocarbon laboratories in Russia. In: Zaitseva GI, Kulkova MA, editors. Radiocarbon in archaeological and paleoenvironmental research. Teza Print: St. Petersburg. p 17–23. In Russian with English summary.Google Scholar
Zaitseva, GI, Vasiliev, SS, Marsadolov, LS, van der Plicht, J, Sementsov, AA, Dergachev, VA, Lebedeva, LM. 1998. A tree-ring and 14C chronology of the key Sayan-Altai monuments. Radiocarbon 40(1):571580.CrossRefGoogle Scholar
Zaretskaya, NE, Sulerzhitsky, LD, Ponomareva, VV. 2007. Radiocarbon dating of large Holocene volcanic events within South Kamchatka (Russian Far East). Radiocarbon 49(2):10651078.CrossRefGoogle Scholar
Zazovskaya, E, Mergelov, N, Shishkov, V, Dolgikh, A, Miamin, V, Cherkinsky, A, Goraychkin, S. 2017. Radiocarbon age of soils in oases of East Antarctica. Radiocarbon 59(2):489503.CrossRefGoogle Scholar