Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T13:08:41.174Z Has data issue: false hasContentIssue false

Dinocysts as a Tool for Palaeoenvironmental Reconstruction in Vitória Bay, Brazil

Published online by Cambridge University Press:  07 February 2020

Alex da Silva de Freitas*
Affiliation:
Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geologia, 24210-346, Niterói, Rio de Janeiro, RJ, Brazil
Javier Helenes Escamilla
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Departamento de Geología, División de Ciencias de la Tierra, 22860, Ensenada, BC, Mexico
Cintia Ferreira Barreto
Affiliation:
Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geologia, 24210-346, Niterói, Rio de Janeiro, RJ, Brazil
Alex Cardoso Bastos
Affiliation:
Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ecologia e Recursos Naturais, 29090-600, Espírito Santo, ES, Brazil
Estefan Monteiro da Fonseca
Affiliation:
Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geologia, 24210-346, Niterói, Rio de Janeiro, RJ, Brazil
José Antônio Baptista Neto
Affiliation:
Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geologia, 24210-346, Niterói, Rio de Janeiro, RJ, Brazil
*
*Corresponding author. Email: alexsilfre@gmail.com

Abstract

Micropaleontological and geochemical data were applied to sediments from southeastern Brazil to study the hydrodynamics associated with the Holocene sea level rise. Sediment cores were taken around Vitória Bay, examined for dinoflagellate cysts and subjected to isotopic analysis. The cyst assemblage mainly dominated by autotrophic species most notably O. centrocarpum, L. machaerophorum and T. vancampoae. The influence of the marine transgression and subsequent regression observed during the Holocene along the coast of Brazil could have initially favored the establishment of an oligotrophic and higher energy environment. The inflow of continental water from tributaries combined with a higher inflow of saline water into the estuarine system could have favored the establishment and subsequent deposition of the dinocysts.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, EA. 1940. The snail, Neritina virginea, L., in a changing salt pond. Ecology – Ecological Society of America 21(3):335346.Google Scholar
Angulo, RJ, Lessa, GG, Souza, MC. 2006. A critical review of Mid- to Late Holocene sea-level flutuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486506.CrossRefGoogle Scholar
Baula, IU, Azanza, RV, Fukuyo, Y, Siringan, FP. 2011. Dinoflagellate cyst composition, abundance and horizontal distribution in Bolinao, Pangasinan, Northern Philippines. Harmful Algae 11:3344.CrossRefGoogle Scholar
Bastos, AC, Vilela, CG, Quaresma, VS. 2010. Modern estuary infilling process derived from radiocarbon dating and high resolution seismic, Vitória Bay-ES, southeastern Brazil. Anais da Academia Brasileira de Ciências 82(3):761770.CrossRefGoogle Scholar
Boehs, G, Absher, TM, Cruz-Kaled, A. 2004. Composition and distribution of benthic molluscs on intertidal flats of Paranaguá Bay (Paraná, Brazil). Scientia Marina 68(4):537543.CrossRefGoogle Scholar
Castro, GA, Santos, EF. 1989. Levantamneto preliminar de moluscos em praias arenosas e areno-lodosas de Piúma, Estado do Espírito Santo, Brasil. Memórias do Isntituto Oswaldo Cruz 84(supl. 4):101104.CrossRefGoogle Scholar
Corrêa, ICS, Elias, ARD, Martins, R, Ketzer, JM. 1993. Sedimentação do Canal de Vitória, Estado do Espírito Santo-Brasil. Pesquisas em Geociências 20(2):107113.CrossRefGoogle Scholar
Dale, B. 1996. Dinoflagellate cyst ecology: modeling and geological applications. In: Jansonious, J, McGregor, DC, editor. Palynology: principles and applications. Vol. 3. Salt Lake City (UT): American Association of Stratigraphic Palynologists Foundation. p. 12491275.Google Scholar
Dale, B. 2009. Eutrophication signals in the sedimentary record of dinoflagellate cysts in coastal waters. Journal of Sea Research 61:103113.CrossRefGoogle Scholar
Doblin, MA, Dobbs, FC. 2006. Setting a size-exclusion limite to remove toxic dinoflagellate cysts from ships ballast water. Marine Pollution Bulletin 52(3):259263.CrossRefGoogle Scholar
Ekdale, AA. 1974. Marine molluscs from shallow-water environments (0 to 60 meters) of the northeast Yucatan coast, Mexico. Bulletin of Marine Science 24(3):638668.Google Scholar
Elshanawany, R, Zonneveld, KAF. 2016. Dinoflagellate cyst distribution in the oligotrophic environments of the Gulf of Aqaba and northen Red Sea. Marine Micropaleontology 124:2944.CrossRefGoogle Scholar
Fensome, RA, Taylor, FJR, Norris, G, Sarjeant, WAS, Wharton, DI, Williams, GL. 1993. A classification of living and fossil dinoflagellates. Micropaleontology 7:1351.Google Scholar
Ferrazo, M, Bauermann, SG, Leipnitz, II. 2008. Palinomorfos não polínicos provenientes de depósitos quaternários do delta do rio Doce, Espírito Santo, Brasil. Parte 1. Gaea- Journal of Geocience 4(2):7887.CrossRefGoogle Scholar
Figueiredo, AG Jr, Toledo, MB, Cordeiro, RC, Godoy, JMO, Silva, FT, Vasconcelos, SC, Santos, RA. 2014. Linked variations in sediment accumulation rates and sea-level in Guanabara Bay, Brazil, over the last 6000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 415:8390.Google Scholar
Folk, R, Ward, W. 1957. Brazos river bar. A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27(1):326.CrossRefGoogle Scholar
Furio, EF, Matsuoka, K, Mizushima, K, Baula, I, Chan, K W, Puyong, A, Srivilai, D, Sidharta, BR, Fukuyo, Y. 2006. Assemblage and geographical distribution of dinoflagellate cysts in surface sediments of coastal waters of Saba, Malaysia. Coastal Marine Science 30:6273.Google Scholar
França, MC, Alves, ICC, Castro, DF, Cohen, MCL, Rosseti, DF, Pessenda, LCR, Lorente, FL, Fontes, NA, Buso, AA Jr, Giannini, PCF, Franciquini, MI. 2015. A multi-proxy evidence for the transition from estuarine mangroves to deltaic freshwater marshes, Southeastern Brazil, due to climatic and sea-level changes during the Late Holocene. Catena 128:155166.CrossRefGoogle Scholar
Freitas, AS, Barreto, CF, Bastos, AC, Baptista-Neto, JA. 2017. Paleoenvironmental records influenced by sea level variations during the Holocene in the Vitória Bay region, Espírito Santo State, Brazil. Radiocarbon 59(4):10871102.CrossRefGoogle Scholar
Gandara-Martins, AL, Almeida, TCM. 2013. Mollusc assemblage in a urban bay nearby a marine extractive reserve, Florianópolis – SC, Brazil. Biota Neotropica 13(2):4150.CrossRefGoogle Scholar
Gu, F, Zonneveld, KAF, Chiessi, CM, Arz, HW, Patzold, J, Behling, H. 2017. Long-term vegetation, climate and ocean dynamics inferred from a 73,500 years old marine sediment core (GeoB2107-3) off southern Brazil. Quaternary Science Reviews 172:5571.CrossRefGoogle Scholar
Guy-Ohlson, D. 1992. Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Palaeobotany and Palynology 71:115.CrossRefGoogle Scholar
Grimm, EC. 1987. CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computer and Geociences 13:1335.CrossRefGoogle Scholar
Hendy, AJW, Jones, DS, Moreno, F, Zapata, V, Jaramillo, C. 2015. Neogene molluscs, shallow marine paleoenvironments, and chronostratigraphy of the Guajira Peninsula, Colombia. Swiss Journal of Paleontology 134:4575.Google Scholar
Hoq, ME, Abdul Wahab, M, Nazrul Islam, M. 2006. Hydrographic status of Sundarbans mangrove, Bangladesh with special reference to post-larvae and juvenile fish and shrimp abundance. Wetlands Ecology and Management 14:7993.CrossRefGoogle Scholar
Hessler, I, Young, M, Holzwarth, U, Mohtadi, M, Luckge, A, Behling, H. 2013. Imprint of eastern Indian Ocean surface oceanography on modern organic-walled dinoflagellate cyst assemblages. Marine Micropaleontology 101:89105.CrossRefGoogle Scholar
Le Roux, JP, Rojas, EM. 2007. Sediment transport petterns determined from grain size parameters: overview and state of the art. Sedimentary Geology 202(3):473488.CrossRefGoogle Scholar
Lewis, J, Rochon, A, Harding, I. 1999. Preliminary observations of cyst-theca relationships in Spiniferites ramosus and Spiniferites membranaceus (Dinophyceae). Grana 38:113124.CrossRefGoogle Scholar
Lima, CB Jr, Soares, SC, Bonicenha, W. 1994. Baía de Vitória: aspectos históricos e culturais. Editora Fundação Ceciliano Abel de Almeida, UFES. 119 p.Google Scholar
Lorente, FL, Pessenda, LCR, Obooh-Ikuenobe, F, Buso Júnior, AA, Cohen, MCL, Meyer, KEB, Giannini, PCF, Oliveira, PE, Rosseti, DF, Borotti Filho, MA, et al. 2014. Palynofacies and stable C and N isotopes of Holocene sediments from Lake Macuco (Linhares, Espírito Santo, southeastern Brazil): Depositional settings and palaeoenvironmental evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 415:6982.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilera, O, Tenório, MC, Rapagnã, LC, Douka, K, Silva, E. 2016. The Usiminas shellmound on the Cabo Frio island: Marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology 3642.CrossRefGoogle Scholar
Machado, GMV, Bastos, AC, Freitas, ASF, Baptista Neto, JA. 2018. Sedimentary, geochemical and micropaleontological responses to sea level variations in the Vitória estuary, Espírito Santo. Radiocarbon 60(2):583600.CrossRefGoogle Scholar
Matthiessen, J, Schreck, M, Schepper, SD, Zorzi, C. 2018. Quaternary dinoflagellate cysts in the Arctic Ocean: Potential and limitations for stratigraphy and paleoenvironmental reconstructions. Quaternary Science Reviews 192:126.CrossRefGoogle Scholar
Martin, L, Suguio, K, Flexor, Jean-Marie, Archanjo, JD. 1996. Coastal quaternary formations of the southern part of the State of Espírito Santo (Brazil). Anais da Academia Brasileira de Ciências 68(3):389404.Google Scholar
Martínez, S, Mahiques, MM, Burone, L. 2013. Mollusks as indicators of historical changes in an estuarine-lagoonal system (Cananéia-Iguape, SE Brazil). The Holocene 23(6):888897.CrossRefGoogle Scholar
Marret, F, Zonneveld, KAF. 2003. Atlas of modern organic-walled dinoflafellate cyst distribution. Review of Paleobotany and Palynology 125:1200.CrossRefGoogle Scholar
Matsuoka, K, Fukuyo, Y. 2000. Technical guide for modern dinoflagellate cyst study. Tokyo: WESTPAC-HAB/WESTPAC/IOC, Japan Society for the Promotion of Science. 29 p.Google Scholar
Matsuoka, K, Yurimoto, T, Chong, VC, Man, A. 2017. Marine palynomorphs dominated by heterotrophic organism remains in the tropical coastal shallow-water sediment; the case of Selangor coast and the estuary of Manjung River in Malaysia. Paleontological Research 21(1):1426.CrossRefGoogle Scholar
Mertens, KN, Bradley, LR, Takano, Y, Mudie, PJ, Marret, F, Aksu, AE, Hiscott, RN, Verleye, TJ, Mousing, EA, Smyrnova, LL, et al. 2012. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length. Quaternary Science Reviews 39:4559.CrossRefGoogle Scholar
Mudie, PJ, Harland, R, Matthiessen, J, de Vernal, A. 2001. Marine dinoflagellate cysts and high latitude quaternary paleoenvironmental reconstructions: an introduction. Journal of Quaternary Science 16(7):595602.CrossRefGoogle Scholar
Murray-Wallace, CV, Woodroffe, CD. 2014. Quaternary sea-level changes: a global perspective. New York: Cambridge University Press. 484 p.CrossRefGoogle Scholar
Naidu, PD, Patil, JS, Narale, DD, Anil, AC. 2012. A first look at the dinoflagellate cysts abundance in the Bay of Bengal: implications on Late Quaternary productivity and climate change. Current Science 102(3):495499.Google Scholar
Narale, DD, Naidu, PD, Anil, AC, Godad, SP. 2015. Evolution of productivity and monsoonal dynamics in the eastern Arabian Sea during the past 68 ka using dinoflagellate cyst records. Palaeogeography, Palaeoclimatology, Palaeoecology 435:193202.CrossRefGoogle Scholar
Narale, DD, Anil, AC. 2016. Spatial distribution of dinoflagellates from the tropical coastal waters of the South Andaman, India: implications for coastal pollution monitoring. Marine Pollution Bulletin 115(1–2):498506.CrossRefGoogle ScholarPubMed
Nascimento, TF, Chacaltana, JTA, Piccoli, FP. 2013. Análise da influência do alargamento de um estreitamento na hidrodinâmica do Canal da Passagem, Vitória-ES, através de modelagem numérica. Revista Brasileira de Recursos Hídricos 18(3):3139.CrossRefGoogle Scholar
Oliveira, LS, Mendonça Filho, JG, Oliveira, AD, Iemini, JA. 2007. Associação de dinocistos de ambiente estuarino em uma seção sedimentar na Baía de Guanabara. Anuário do Instituto de Geociências 30:230230.Google Scholar
Pienkowski, AJ, Mudie, PJ, England, JH, Smith, JN, Furze, MFA. 2011. Late Holocene environmental conditions in Coronation Gulf, southwestern Canadian Arctic Archipelago: evidence from dinoflagellate cysts, other non-pollen palynomorphs, and pollen. Journal of Quaternary Science 26(8):839853.CrossRefGoogle Scholar
Poliakova, A, Zonneveld, KAF, Herbeck, LS, Jennerjahn, TC., Permana, H, Kwiatkowski, C, Behling, H. 2017. High-resolution multi-proxy reconstruction of environmental changes in coastal waters of the Java Sea, Indonesia, during the late Holocene. Palynology 41(3):297310.CrossRefGoogle Scholar
Pospelova, V, Chmura, GL, Boothman, WS, Latimer, JS. 2002. Dinoflagellate cyst records and human disturbance in two neighboring estuaries, New Bedford Harbor and Apponagansett Bay, Massachusetts (USA). The Science of the Total Environment 298:81102.CrossRefGoogle Scholar
Pospelova, V, Esenkulova, S, Johannessen, SC, O’Brien, MC, Macdonald, RW. 2010. Organic-walled dinoflagellate cyst production, composition and flux from 1996 to 1998 in the central Strait of Georgia (BC, Canada): a sediment trap study. Marine Micropaleontology 75:1737.CrossRefGoogle Scholar
Price, AM, Baustian, MM, Turner, RE, Rabalais, NN, Chmura, GL. 2017. Dinoflagellate cysts track eutrophication in the Northern Gulf of Mexico. Estuaries and Coasts 41(5):13221336.CrossRefGoogle Scholar
Radi, T, Pospelova, V, de Vernal, A, Barrie, JV. 2007. Dinoflagellate cysts as indicators of water quality and productivity in British Columbia estuarine environments. Marine Micropaleontology 62:269297.CrossRefGoogle Scholar
Rios, EC. 2009. Compendium of Brazilian Sea Shells. Rio Grande: Evangraf. 668 p.Google Scholar
Rigo, D, Chacaltana, JTA. 2006. Computational modelling of mangrove effects on the hydrodynamics of Vitoria bay, Espírito Santo – Brazil. Journal of Coastal Research (1):15431545.Google Scholar
Rochon, A, de Vernal, A, Turon, JL, Mathiessen, J, Head, MJ. 1999. Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. AASP Contributions 35. American Association of Stratigraphic Palynologists Foundation.Google Scholar
Saetre, MML, Dale, B, Abdullahb, MI, Saetre, G-P. 1997. Dinoflagellate cysts as potential indicators of industrial pollution in a Norwegian fjord. Marine Environmental Research 44(2):167189.CrossRefGoogle Scholar
Scott, L. 1992. Environmental implications and origin of microscopic Pseudoschizaea Thiegart and Frantz ex R. Potonié emend. in sediments. Journal of Biogeography 19:349354.CrossRefGoogle Scholar
Sritrairat, S, Peteet, DM, Kenna, TC, Sambrotto, R, Kurdyla, D, Guilderson, T. 2012. A history of vegetation, sediment and nutrient dynamics at Tivoli North Bay, Hudson estuary, New York. Estuarine, Coastal and Shelf Science 102–103:2435.CrossRefGoogle Scholar
Srivilai, D, Lirdwitayaprasit, T, Fukuyo, Y. 2012. Distribution of dinoflagellate cysts in the surface sediment of the coastal areas in Chonburi Province, Thailand. Coastal Marine Science 35:1119.Google Scholar
Stancliffe, RPW. 1996. Microforaminiferal linings. In: Jansonius, J, Macgregor, DC, editor. Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation 1:373–379.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615621.Google Scholar
Santos, A, Carvalho, MA, Oliveira, AD, Mendonça Filho, JG. 2017. Paleoenvironmental changes and influence on Operculodinium centrocarpum during the Quaternary in the Campos Basin, southwestern Brazil. Journal of South American Earth Sciences 80:266271.CrossRefGoogle Scholar
Taylor, FJR, Hoppenrath, M, Saldarriaga, JF. 2008. Dinoflagellate diversity and distribution. Biodiversity Conservation 17:407418.CrossRefGoogle Scholar
Tian, C, Doblin, MA, Johnston, EL, Pei, H, Hu, W. 2018. Dinoflagellate cyst abundance is positively correlated to sediment organic carbon in Sydney harbour and Botany Bay, NSW, Australia. Environmental Science and Pollution Research 25:58085821.CrossRefGoogle ScholarPubMed
Traverse, A. 2008. Paleopalynology. Springer. 2a edição. 813 p.Google Scholar
van Soelen, EE, Lammerstma, EI, Cremer, H, Donders, TH, Sangiorgi, F, Brooks, GR, Larson, RA, Damsté, JSS, Wagner-Cremer, F, Reichart, GF. 2010. Late Holocene sea-level rise in Tampa bay: integrated reconstruction using biomarkers, pollen, organic-walled dinoflagellate cysts, and distoms. Estuarine, Coastal and Shelf Science 86:216224.CrossRefGoogle Scholar
Veronez, P Jr, Bastos, AC, Quaresma, VS. 2009. Morfologia e distribuição sedimentar de um sistema estuarino tropical: Baía de Vitória, ES. Revista Brasileira de Geofísica 27(4):609624.Google Scholar
Wall, D, Dale, B, Lohmann, GP, Smith, WK. 1977. The environment and climatic distribuition of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and adjacent seas. Marine Micropaleontology 2:121200.CrossRefGoogle Scholar
Wentworth, CK. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30(5):377392.CrossRefGoogle Scholar
Yang, Y, Siegwolf, RTW, Komer, C. 2015. Species specific and environment induced variation of 13δC and 15δN in alpine plants. Frontiers in Plant Science 6(423):114.CrossRefGoogle ScholarPubMed
Zonneveld, KA, Susek, E, Fischer, G. 2010. Seasonal variability of the organic-walled dinoflagellate cyst production in the coastal upwelling region of Cape Blanc (Mauritania): a five-year survey. Journal of Phycology 46:202215.CrossRefGoogle Scholar
Zonneveld, KA, Chen, L, Elshanawany, R, Fischer, HW, Hoins, M, Ibrahim, MI, Pittauerova, D, Versteegh, GJ. 2012. The use of dinoflagellate cysts to separate human-induced from natural variability in the trophic state of the Po-River discharge plume over the last two centuries. Marine Pollution Bulletin 64:114132.CrossRefGoogle ScholarPubMed
Zonneveld, KAF, Marret, F, Versteegh, GJ M, Bogus, K, Bouimetarhana, I, Crouch, E, de Vernal, A, Elshanawany, R, Esper, O, Forke, S, et al. 2013. Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and Palynology 191:1198.CrossRefGoogle Scholar
Zonneveld, KAF, Pospelova, V. 2015. A determination key for modern dinoflagellate cysts. Palynology 39(3):387409.CrossRefGoogle Scholar