Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:34:49.476Z Has data issue: false hasContentIssue false

Evaluation of Sample Preparation Protocols for the 14C Dating of Tupiguarani Pottery in Southeastern Brazil

Published online by Cambridge University Press:  19 August 2016

Fabiana M Oliveira
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Kita D Macario*
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Bruna B Pereira
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Angela Buarque
Affiliation:
Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, Rio de Janeiro, 20940-40, RJ, Brazil
David Chivall
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, United Kingdom
Eduardo Q Alves
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, United Kingdom
Christopher Bronk Ramsey
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, United Kingdom
*
*Corresponding author. Email: kitamacario@gmail.com.

Abstract

This study evaluates the radiocarbon dating of ceramic samples from Tupiguarani sites in Brazil, a settlement type dating up to 3000 cal BP. In this work, residues from ceramic samples from four archaeological sites in Rio de Janeiro (Morro Grande, Serrano, Barba Couto, and Bananeiras) were analyzed. In order to identify the most suitable sample preparation protocols, the humic fraction was isolated from the bulk material at the Oxford Radiocarbon Accelerator Unit (ORAU), whereas the acid-base-acid (ABA) residue fraction method was applied at the Radiocarbon Laboratory of the Fluminense Federal University (LAC-UFF). The dating results were compared to the current knowledge about the occupational periods of the sites. For the Morro Grande site, the results of humic and ABA residue fractions show a difference of more than 1500 yr. For the Serrano site, the 14C ages obtained from the two pretreatments are identical, and as with the Barba Couto and Bananeiras sites, indicate an occupation during the Brazilian colonial period of the 16th century AD and are compatible with the archaeological data.

Type
Chemical Pretreatment Approaches
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Batten, RJ, Gillespie, R, Gowlett, JAJ, Hedges, REM. 1986. The AMS dating of separate fractions in archaeology. Radiocarbon 28(2A):698701.Google Scholar
Beauclair, M, Scheel-Ybert, R, Bianchini, GF, Buarque, A. 2009. Fire and ritual: bark hearths in South-American Tupiguarani mortuary rites. Journal of Archaeological Science 36(7):14091415.CrossRefGoogle Scholar
Boaretto, E, Wu, X, Yuan, J, Bar-Yosef, O, Chu, V, Pan, Y, Liu, K, Cohen, D, Jiao, T, Li, S, Gu, H, Goldberg, P, Weiner, S. 2009. Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China. Proceedings of the National Academy of Sciences of the USA 106(24):95959600.CrossRefGoogle ScholarPubMed
Bonsall, C, Cook, G, Manson, J, Sanderson, D. 2002. Direct dating of Neolithic pottery: progress and prospects. Documenta Praehistorica 29:4759.CrossRefGoogle Scholar
Brochado, JP. 1973. Migraciones que difundieran la Tradición Alfarera Tupiguarani. Relaciones, Sociedad Argentina de Antropología, Buenos Aires 7(a):739.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C. 2013. OxCal software v 4.2.4. Available at https://c14.arch.ox.ac.uk/oxcal/.Google Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.Google Scholar
Buarque, A. 1999. A cultura tupinambá no Estado do Rio de Janeiro. In: Tenório MC, editor. Pré-História da Terra Brasilis. Rio de Janeiro: EDUFRJ. p 307320.Google Scholar
Buarque, A. 2009. Pesquisas arqueológicas em sítios Tupinambá em Araruama, in Estado da Arte das pesquisas arqueológicas sobre a Tradição Tupiguarani. In: Loures de Oliveira AP, editor. As pesquisas arqueológicas em sítios Tupiguarani no Estado do Rio de Janeiro. Minas Gerais: Editora UFJF. p 3763.Google Scholar
Buarque, A. 2010. As estruturas funerárias das aldeias Tupinambá da região de Araruama, RJ. In: Prous A, Lima TA, editors. Os Ceramistas Tupiguarani Volume III. Minas Gerais: Iphan. p 149172.Google Scholar
Buarque, A, Rodrigues-Carvalho, C, Silva, EC. 2003. Programa Funerário dos Tupinambá em Araruama, RJ – Sítio Bananeiras. Revista do Museu de Arqueologia e Etnologia, MAE 13:3955.Google Scholar
Cezar, GDS, da Rocha, PL, Buarque, A, da Costa, A. 2001. Two Brazilian archaeological sites investigated by GPR: Serrano and Morro Grande. Journal of Applied Geophysics 47(3–4):227240.Google Scholar
Crancio, F. 1987. Ocorrência de cerâmica na camada superior do sambaqui Zé Espinho. In: Kneip L, editor. Coletores e pescadores pré-históricos de Guaratiba-Rio de Janeiro. Minas Gerais: Editora UFRJ e EDUFF. p 156184.Google Scholar
Dee, M, Bronk Ramsey, C. 2000. Refinement of graphite target production at ORAU. Nuclear Instruments and Methods in Physics Research B 172(1–4):449453.Google Scholar
Gaspar, MD, Tenorio, MC, Buarque, A, Barbosa-Guimarães, M, Oliveira, JC, Scheel-Ybert, R. 2004. Histórico e principais resultados do projeto de investigação: o aproveitamento ambiental das populações pré-históricas do Rio de Janeiro. Arquivos do Museu Nacional, Rio de Janeiro 62(2):103129.Google Scholar
Hedges, REM, Tiemei, C, Housley, RA. 1992. Results and methods in the radiocarbon dating of pottery. Radiocarbon 34(3):906915.Google Scholar
Higham, TFG, Jacobi, RM, Bronk Ramsey, C. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48(2):179195.Google Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18891903.Google Scholar
Hoopes, JW, Barnett, WK. 1995. The Emergence of Pottery: Technology and Innovation in Ancient Societies. Washington, DC: Smithsonian Institution Press.Google Scholar
Jones, S. 1997. The Archaeology of Ethnicity. New York: Routledge.Google Scholar
Linares, R, Macario, KD, Santos, GM, Carvalho, C, dos Santos, HC, Gomes, PR, Castro, MD, Oliveira, FM, Alves, EQ. 2015. Radiocarbon measurements at LAC-UFF: recent performance. Nuclear Instruments and Methods in Physics Research B 361:341345.CrossRefGoogle Scholar
Macario, KD, Buarque, A, Scheel-Ybert, R, Anjos, RM, Gomes, PRS, Beauclair, M, Hatté, C. 2009. The long-term Tupiguarani occupation in southeastern Brazil. Radiocarbon 51(3):937946.Google Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Alves, EQ, Jou, RM, Oliveira, MI, Pereira, BB, Moreira, V. 2015. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research B 361:402405.Google Scholar
Macario, KD, Oliveira, FM, Moreira, VN, Alves, EQ, Carvalho, C, Jou, RM, Oliveira, MI, Pereira, BB, Hammerschlag, I, Netto, B, Seixas, AP, Malafaia, JVP, Moreira, L, Cunha, L, Assumpção, A, Paula, PM, Lima, L, Lopes, F, Diaz, M, Chanca, IS, Gomes, PRS. 2016. Optimization of the amount of zinc in the graphitization reaction for radiocarbon AMS measurements at LAC-UFF. Radiocarbon. This issue. DOI:10.1017/RDC.2016.42.CrossRefGoogle Scholar
McFadgen, BG. 1982. Dating New-Zealand archaeology by radiocarbon. New Zealand Journal of Science 25(4):379392.Google Scholar
Monteiro, J. 1949. Relação da Província do Brasil, 1610. História da Companhia de Jesus no Brasil. Serafim Leite, S.I., Tomo VIII, Rio de Janeiro: Instituto Nacional do Livro. p 393425.Google Scholar
Nakamura, T, Yasuhiro, T, Sei’ichiro, T, Hirotaka, O. 2001. Radiocarbon dating of charred residues on the earliest pottery in Japan. Radiocarbon 43(2B):11291138.Google Scholar
Noelli, F. 2008. The Tupi expansion. In: Silverman H, Isbell W, editors. Handbook of South American Archaeology. New York: Springer. p 659670.Google Scholar
Nunes, KP, Toyota, RG, Oliveira, PMS, Neves, EG, Soares, EAA, Munita, CS. 2013. Preliminary compositional evidence of provenance of ceramics from Hatahara archaeological site, central Amazonia. Journal of Chemistry 2013:701748.Google Scholar
O’Malley, JM, Kuzmin, YV, Burr, GS, Donahue, DJ, Jull, AJT. 1999. Direct radiocarbon AMS dating of the earliest pottery from the Russian Far East and Transbaikal. Mémories de la Société e Préhistorique Française [Supplément 1999 de la Revue d’Archéometrie] 26:1924.Google Scholar
Prous, A. 1992. Arqueologia Brasileira. Brasília: UNB. 605 p.Google Scholar
Roosevelt, AC, Housley, RA, Da Silveira, MI, Maranca, S, Johnson, R. 1991. Eighth millennium pottery from a prehistoric shell midden in the Brazilian Amazon. Science 254(5038):16211624.Google Scholar
Salvador, FV. 1982. História do Brasil (1500–1627). São Paulo: Editora da Universidade de São Paulo. 437 p.Google Scholar
Sealy, J, Johnson, M, Richards, M, Nehlich, O. 2014. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. Journal of Archaeological Science 47:6469.Google Scholar
Scheel-Ybert, R, Gouveia, SEM, Pessenda, LC, Aravena, R, Coutinho, LM, Boulet, R. 2003. Holocene palaeoenvironmental evolution in the São Paulo State (Brazil), based on anthracology and soil δ13C analysis. The Holocene 13(1):7381.Google Scholar
Scheel-Ybert, R, Macario, K, Buarque, A, Anjos, RM, Beauclair, M. 2008. A new age to an old site: the earliest Tupiguarani settlement in Rio de Janeiro State? Anais da Academia Brasileira de Ciências 80(4):763770.CrossRefGoogle Scholar
Scheel-Ybert, R, Beauclair, M, Buarque, A. 2013. The forest people: landscape and firewood use in the Araruama region, southeastern Brazil, during the late Holocene. Vegetation History and Archaeobotany 23(2):97111.Google Scholar
Skibo, JM. 2013. Understanding Pottery Function. Manuals in Archaeological Method, Theory and Technique. New York: Springer.Google Scholar
Staden, H. 1978. Wahrhaftige Historia: und Beschreibung einer Landschaft der wilden, nackten, grimmigen Menschenfresser in der Neuen Welt Amerika gelegen. Kassel: Thiele & Schwarz.Google Scholar
Stäuble, H. 1995. Radiocarbon dates of the earliest Neolithic in Central Europe. Radiocarbon 37(2):227237.Google Scholar
Stott, AW, Berstan, R, Evershed, P, Hedges, REM, Bronk Ramsey, C, Humm, MJ. 2001. Radiocarbon dating of single compounds isolated from pottery cooking vessel residues. Radiocarbon 43(2A):191197.Google Scholar
Talamo, S, Richards, M. 2011. A comparison of bone pretreatment methods for AMS dating of samples >30,000 BP. Radiocarbon 53(3):443449.Google Scholar
Théry-Parisot, I, Chabal, L, Chrzavzez, J. 2010. Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology 291(1):142153.Google Scholar
Tite, MS. 2008. Ceramic production, provenance and use—a review. Archaeometry 50(2):216231.CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F, Person, A, Boucher, H. 2009. Radiocarbon dating of calcined bones: Where does the carbon come from? Radiocarbon 51(2):601611.CrossRefGoogle Scholar