Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T05:50:24.776Z Has data issue: false hasContentIssue false

Potential Freshwater Reservoir Effects in a Neolithic Shell Midden at Riņņkalns, Latvia

Published online by Cambridge University Press:  09 February 2016

John Meadows
Affiliation:
Centre for Baltic and Scandinavian Archaeology (ZBSA), Schleswig-Holstein State Museums Foundation Schloss Gottorf, Schlossinsel 1, 24837 Schleswig, Germany Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität zu Kiel, Germany
Harald Lübke
Affiliation:
Centre for Baltic and Scandinavian Archaeology (ZBSA), Schleswig-Holstein State Museums Foundation Schloss Gottorf, Schlossinsel 1, 24837 Schleswig, Germany
Ilga Zagorska
Affiliation:
Institute of Latvian History at the University of Latvia (LVI), Akademijas laukums 1, Riga LV-1050, Latvia
Valdis Berziņš
Affiliation:
Institute of Latvian History at the University of Latvia (LVI), Akademijas laukums 1, Riga LV-1050, Latvia
Aija Ceriņa
Affiliation:
Faculty of Geography and Earth Sciences, University of Latvia
Ilze Ozola
Affiliation:
Faculty of Geography and Earth Sciences, University of Latvia

Abstract

Riņņukalns is the only known prehistoric shell midden in the eastern Baltic, and is one of the few middens in northern Europe consisting mainly of freshwater mussel shells. Situated on the Salaca River at the outlet of Lake Burtnieks, in northeastern Latvia, the site was originally excavated in the 1870s, and reinvestigated several times over the following decades. A new excavation in 2011 showed that part of the midden remained intact. The new exposure, dated to the later 4th millennium cal BC, yielded rich fishbone and mollusk shell assemblages, herbivore, human and bird bones, and a wide range of artifacts typical of a subsistence economy based on fishing, hunting, and gathering. Human remains from burials excavated in the 1870s were also located in archives. The co-occurrence at Riņņukalns of human remains with a broad range of terrestrial and aquatic food remains provides an ideal setting to study freshwater reservoir effects and other isotopic signals of diet and mobility. The extent of 14C depletion in local freshwater resources is an essential parameter for such studies; on the basis of 14C ages of modern and paleoenvironmental samples, we estimate that the applicable reservoir age in Lake Burtnieks is in the order of 800–900 14C yr.

Type
Reservoir Effects
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, DC. 1999. The morphology, growth and reproduction of Unionidae (Bivalvia) in a Fenland waterway. Journal of Molluscan Studies 65:4760.Google Scholar
Bērziñš, V, Brinker, U, Klein, C, Lübke, H, Meadows, J, Rudzīte, M, Schmölcke, U, Stümpel, H, Zagorska, I. Forthcoming. New research on Riņņukalns, a Neolithic freshwater shell midden in northern Latvia. Antiquity.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Caraco, N, Bauer, JE, Cole, JJ, Petsch, S, Raymond, P. 2010. Millennial-aged organic carbon subsidies to a modern river food web. Ecology 91(8):2385–93.Google Scholar
Dettman, DL, Reische, AK, Lohmann, KC. 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta 63(7–8): 1049–57.CrossRefGoogle Scholar
Eberhards, G. 2006. Geology and development of palaeo-lake Burtnieks during the Late Glacial and Holocene. In: Larsson, L, Zagorska, I, editors. Back to the Origin. New Research in the Mesolithic–Neolithic Zvejnieki Cemetery and Environment, Northern Latvia. Acta Archaeologica Lundensia Series 8/52:2551.Google Scholar
Eriksson, G. 2006. Stable isotope analysis of human and faunal remains from Zvejnieki. In: Larsson, L, Zagorska, I, editors. Back to the Origin. New Research in the Mesolithic–Neolithic Zvejnieki Cemetery and Environment, Northern Latvia. Acta Archaeologica Lundensia Series 8/52:183216.Google Scholar
Eriksson, G, Lidén, K. 2013. Dietary life histories in Stone Age Northern Europe. Journal of Anthropological Archaeology 32(3):288302.Google Scholar
Eriksson, G, Lõugas, L, Zagorska, I. 2003. Stone Age hunter-fisher-gatherers at Zvejnieki, northern Latvia: radiocarbon, stable isotope and archaeozoology data. Before Farming 1(2): 126.CrossRefGoogle Scholar
Fernandes, R, Bergemann, S, Hartz, S, Grootes, PM, Nadeau, M-J, Melzner, F, Rakowski, A, Hüls, M. 2012. Mussels with meat: bivalve tissue-shell radiocarbon age differences and archaeological implications. Radiocarbon 54(3–4):953–65.Google Scholar
Geist, J, Auerswald, K, Boom, A. 2005. Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity? Geochimica et Cosmochimica Acta 69(14):3545–54.Google Scholar
Geyh, MA, Schotterer, U, Grosjean, M. 1998. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40(2):921–31.Google Scholar
Hua, Q, Barbetti, M, Rakowski, A. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):2059–72.Google Scholar
Kļaviñš, M, Rodinov, V, Kokorīte, I, Kļaviña, I, Apsīte, E. 2001. Long-term and seasonal changes in chemical composition of surface waters in Latvia. Environmental Monitoring and Assessment 66(3):233–51.Google Scholar
Larsson, L. 2010. A double grave with amber and bone adornments at Zvejnieki in northern Latvia. Archaeologia Baltica 13:8090.Google Scholar
Lyulko, I, Berg, P, Deveika, D. 2001. ICP Waters sites in Latvia. In: Lyulko, I, Berg, P, Skjelkvåle, BL, editors. Reports of National Monitoring Activities and results from Latvia, Switzerland and UK presented at the 16th meeting of the ICP Waters Programme Task Force in Riga, Latvia, October 18–20, 2000. p 722.Google Scholar
Mannermaa, K. 2008. Birds and burials at Ajvide (Gotland, Sweden) and Zvejnieki (Latvia) about 8000–3900 BP. Journal of Anthropological Archaeology 27(2):201–25.Google Scholar
McConnaughey, TA, Gillikin, DP. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28(5–6):287–99.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Ozola, I, Ceriña, A, Kalniña, L. 2010. Reconstruction of palaeovegetation and sedimentation conditions in the area of ancient Lake Burtnieks, northern Latvia. Estonian Journal of Earth Sciences 59:164–79.Google Scholar
Rakowski, AZ, Nadeau, M-J, Nakamura, T, Pazdur, A, Paweczyk, S, Piotrowska, N. 2013. Radiocarbon method in environmental monitoring of CO2 emission. Nuclear Instruments and Methods in Physics Research B 294:503–7.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3): 1299–304.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, G, Manning, S, Reimer, RW, Remmele, S, Richards, DA, Southon, JR, Talamo, S, Taylor, FW, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–50.Google Scholar
Rudzīte, M, Zagorska, I, Lübke, H, Bērziñš, V. 2012. Molluscs from a new archaeological excavation at Riņņukalns, Latvia. Schriften zur Malakozoologie 27:4956.Google Scholar
Sensuła, B, Böttger, T, Pazdur, A, Piotrowska, N, Wagner, R. 2006. Carbon and oxygen isotope composition of organic matter and carbonates in recent lacustrine sediments. Geochronometria 25:7794.Google Scholar
Sievers, CG. 1875. Ein normannisches Schiffsgrab bei Ronneburg und die Ausgrabung des Rinnehügels. Verhandlungen der Berliner Gesellschaft für Anthropologic, Ethnologic und Urgeschichte (Zeitschrift für Ethnologie) 7:214–25.Google Scholar
Sievers, CG. 1877. Ueber die wahrscheinliche Entstehung des Rinnehügels. Sitzungsberichte Dorpater Naturforscher-Gesellschaft 4:406–17.Google Scholar
Sommer, A. 1880. Bericht über seine im Sommer 1880 ausgeführte wissenschaftliche Reise zum Burtnecksee. Sitzungsberichte Dorpater Naturforscher-Gesellschaft 5:409–16.Google Scholar
Sommer, A. 1884. Der Rinne-Kalns und seine Bedeutung fur die Anthropologic Livlands. Archiv für die Naturkunde Liv-, Ehst- und Kurlands Serie II IX:345–99.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Šturms, E. 1927. Akmenslaikmets Latvija, I. Dzīvesvietas. Rīga.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Zagorska, I. 2006. Radiocarbon chronology of the Zvejnieki burials. In: Larsson, L, Zagorska, I, editors. Back to the Origin. New Research in the Mesolithic–Neolithic Zvejnieki Cemetery and Environment, Northern Latvia. Acta Archaeologica Lundensia Series 8/52:91113.Google Scholar
Zhilin, MG, Karhu, AA. 2002. Exploitation of birds in the early Mesolithic of Central Russia. In: Proceedings of the 4th Meeting of the ICAZ Bird Working Group Kraków, Poland, 11–15 September, 2001. Acta Zoologica Cracoviensia 45 (special issue): 109–16.Google Scholar
Zoppi, U, Crye, J, Song, Q, Arjomand, A. 2007. Performance evaluation of the new AMS system at Accium BioSciences. Radiocarbon 49(1):173–82.CrossRefGoogle Scholar