Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T20:37:42.916Z Has data issue: false hasContentIssue false

Probabilistic 14C Age-Depth Models Aiding the Reconstruction of Holocene Paleoenvironmental Evolution of a Marshland from Southern Hungary

Published online by Cambridge University Press:  19 November 2018

Tünde Törőcsik*
Affiliation:
Department of Geology and Paleontology, University of Szeged, Egyetem street 2, 6722Szeged, Hungary Institute of Nuclear Research of HAS, Bem tér 18/c, 4026Debrecen, Hungary
Sándor Gulyás*
Affiliation:
Department of Geology and Paleontology, University of Szeged, Egyetem street 2, 6722Szeged, Hungary
Dávid Molnár
Affiliation:
Department of Geology and Paleontology, University of Szeged, Egyetem street 2, 6722Szeged, Hungary
Réka Tapody
Affiliation:
Department of Geology and Paleontology, University of Szeged, Egyetem street 2, 6722Szeged, Hungary
Balázs P Sümegi
Affiliation:
Department of Geology and Paleontology, University of Szeged, Egyetem street 2, 6722Szeged, Hungary Archaeological Institute of Hungarian Academy of Sciences, Úri street 49, Budapest, Hungary
Gábor Szilágyi
Affiliation:
Department of Geology and Paleontology, University of Szeged, Egyetem street 2, 6722Szeged, Hungary Hortobágy National Park, Sumen u. 2, 4024Debrecen, Hungary
Mihály Molnár
Affiliation:
Institute of Nuclear Research of HAS, Bem tér 18/c, 4026Debrecen, Hungary
Gusztáv Jakab
Affiliation:
Archaeological Institute of Hungarian Academy of Sciences, Úri street 49, Budapest, Hungary Tessedik Campus, 5540Szarvas Szabadság út 1-3, Hungary
Pál Sümegi
Affiliation:
Department of Geology and Paleontology, University of Szeged, Egyetem street 2, 6722Szeged, Hungary Archaeological Institute of Hungarian Academy of Sciences, Úri street 49, Budapest, Hungary
Zsolt Novák
Affiliation:
Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem street 2, 6722Szeged, Hungary
*
*Corresponding author. Email: t.torocsik@geo.u-szeged.hu.
*Corresponding author. Email: t.torocsik@geo.u-szeged.hu.

Abstract

This paper presents first chronological results for a Holocene marshland system from the southern part of the Danube-Tisza Interfluve. Radiocarbon (14C) ages were used to build age-depth models relying of probabilistic tools. Four models have been built: a linear one using dates gained via simple calibration, a P_Sequence model, fitting a polynomial function to calibrated dates; a Gamma_Sequence considering priori given and posterior accumulation rates have been constructed. As there was no significant difference between the mean values of individual models all seem suitable for establishing a reliable chronology despite differences in 95% CI ranges. While P_Sequence models underestimated SR, values calculated from the polynomial model were not significantly different from those of the G_Sequence. Based on multiproxy geochemical, sedimentological, paleoecological data the evolution of the system was reconstructed, covering a timespan of ca. 13,000 years starting from 12,000 BC and lasting until 1300 AD. Highest accumulation rates are dated to the Early Middle Ages from the 11th century. Several climate changes could have been identified which are present in other Hungarian and Western European records too, such as the 5b IRD event at ca. 5800 BC, a humid phase around 1600 BC, and a cool humid phase around the 6th century AD.

Type
Atmosphere
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Aaby, B, Digerfeldt, G. 1986. Sampling techniques for lakes and bogs. In: Berglund BE, editor. Handbook of Holocene Palaeoecology and Palaeohydrology. New York: Wiley. p 181194.Google Scholar
Behre, KE. 1981. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23:225245.Google Scholar
Behre, KE. 1988. The role of man in European vegetation history. In: Huntley B, Webb T III, editors. Handbook of Vegetation Science 7. Dordrecht: Springer Netherlands. p 633672.Google Scholar
Bennett, KD. 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. Holocene 4:337348.Google Scholar
Blaauw, M. 2010. Methods and code for classical age-modelling of radiocarbon sequences. Quat. Geochronol. 5:512518.Google Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate ageedepth models using an autoregressive gamma process. Bayesian Analysis 3:457474.Google Scholar
Blaau, M, Christen, JA, Benett, KD, Reimer, PJ. 2018. Double the dates and go for Bayes-Impacts of model choice, dating density and quality of chronologies. Quaternary Science Reviews 188:5866.Google Scholar
Blaauw, M, Heegaard, E. 2012. Estimation of age-depth relationships. In: Birks HJB, Juggins S, Lotter A, Smol JP, editors. Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research 5. Dordrecht: Springer. p 379413.Google Scholar
Borhidi, A. 1961. Klimadiagramme und Klimazonale Karte Ungarns. Annales Universitatis Scientiarium Budapestiensis de Lorando Eötvös Nominatae Sectio Biologica 4:2150.Google Scholar
Borhidi, A. 1993. Social behaviour types of the Hungarian flora its naturalness and relative ecological indicator values . Pécs: Janus Pannonius Tudományegyetem. Kiadványa.Google Scholar
Borhidi, A. 2003. Plant Associations of Hungary. Budapest: Akadémiai Kiadó.Google Scholar
Boycott, AE. 1934. The habitats of land Mollusca in Britain. The Journal of Ecology 22:138.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.Google Scholar
Büntgen, U, Myglan, VS, Lyungquvist, FC, McCormick, M, Cosmo, N, Sigl, M, Jungclaus, J, Wagner, S, Krusic, PJ, Esper, J, Kaplan, JO, de Vaan, MAC, Luterbacher, J, Wacker, L, Tegel, W, Kirdyanov, AV. 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9:231236.Google Scholar
Clark, RL. 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments Pollen et Spores 24:523535.Google Scholar
Dean, WE Jr. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods Journal of Sedimentary Research 44:242248.Google Scholar
Gulyás, S, Sümegi, P. 2011a. Farming or foraging? New environmental data to the life and economic transformation of Late Neolithic tell communities (Tisza Culture) in SE Hungary Journal of Archaeological Science 38:33233339.Google Scholar
Gulyás, S, Sümegi, P. 2011b. Riparian environment in shaping social and economic behavior during the first phase of the evolution of Late Neolithic tell complexes in SE Hungary Journal of Archaeological Science 38:26832695.Google Scholar
Gulyás, S, Sümegi, P. 2012a. The reconstructions of past hydrologies of River Tisza using multivariable archeomalacological analysis. In: Geiger J, Pál-Molnár E, Malvic T, editors. New Horizons in Central European Geomathematics Geostatistics and Geoinformatics Geolitera Publishers. p 113131.Google Scholar
Gulyás, S, Sümegi, P. 2012b. Édesvízi puhatestűek a környezetrégészetben (Freshwater mollusks in environmental archeology) . Geolitera Szeged 169.Google Scholar
Hertelendi, E, Csongor, É, Záborszky, L, Molnár, J, Gál, J, Győrffi, M, Nagy, S. 1989. A counter system for high-precision 14C dating Radiocarbon 31:399406.Google Scholar
Hertelendi, E, Sümegi, P, Szöőr, G. 1992. Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 34:833839.Google Scholar
Jones, G. 1992. Weed phytosociology and crop husbandry: identifying a contrast between ancient and modern practice. Review of Palaeobotany and Palynology 73:133143.Google Scholar
Krolopp, E. 1973. Quaternary malacology in Hungary. Földrajzi Közlemények 21:161171.Google Scholar
Krolopp, E. 1983. Biostratigraphic division of Hungarian Pleistocene Formations according to their Mollusc fauna. Acta Geologica Hungarica 26:6982.Google Scholar
Krolopp, E, Sümegi, P. 1995. Palaeoecological reconstruction of the Late Pleistocene Based on Loess Malacofauna in Hungary. GeoJournal 26:213222.Google Scholar
Langlet, D, Alleman, LY, Plisnier, PD, Hughes, H, André, L. 2006. Mn seasonal upwelling recorded Lake Tanganyika mussels. Biogeosciences Discussions 3:14531471.Google Scholar
Langlet, D, Alleman, LY, Plisnier, PD, Hughes, H, André, L. 2007. Mn content records seasonal upwelling in Lake Tanganyika mussels. Biogeosciences 4:195203.Google Scholar
Lazareth, CE, Vander Putten, E, André, L, Dehairs, F. 2003. High resolution trace element profiles in shells of the mangrove bivalve Isognomonephippium: a record of envrionmental spatio-temporal variations. Estuarine Coastal and Shelf Science 57:11031114.Google Scholar
Ložek, V. 1964. Quartärmollusken der Tschechoslowakei. Rozpravy Ústredniho ústavu geologického 31:1374.Google Scholar
Magny, M, de Beaulieu, JL, Drescher-Schneider, R, Vannière, B, WalterSimonnet, AV, Millet, L, Bossuet, G, Peyron, O. 2006. Climatic oscillations in central Italy during the Last Glacial–Holocene transition: the record from Lake Accesa. Journal of Quaternary Science 21:311320.Google Scholar
Magyari, EK, Chapman, JC, Passmore, DG, Allen, JRM, Huntley, JP, Huntley, B. 2010. Holocene persistence of wooded steppe in the Great Hungarian Plain. Journal of Biogeography 37: 915935.Google Scholar
Michczyński, A. 2007. Is it possible to find a good point estimate of a calibrated radiocarbon date? Radiocarbon 49:393401.Google Scholar
Miháltz, I. 1953. Az Észak-Alföld keleti részének földtani térképezése. Földtani Intézet jelentése 1951-ről. p 61–8.Google Scholar
Molnár, B. 2015. A Kiskunsági Nemzeti Park földtana és vízföldtana. Szeged: JATEPress.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, MAG, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen Hungary). Radiocarbon 55:665676.Google Scholar
Moore, PD, Webb, JA, Collinson, ME. 1991. Pollen Analysis. Oxford: Blackwell Scientific.Google Scholar
Munsell, SCC, Notation, AC. 1954. Munsell Color Company. Baltimore (MD).Google Scholar
Pigati, JS, Quade, J, Shanahan, TM, Haynes, CV Jr. 2004. Radiocarbon dating of minute gastropods and new constraints on the timing of spring-discharge deposits in southern Arizona USA. Palaeogeography Palaeoclimatology Palaeoecology 204:3345.Google Scholar
Pigati, JS, Rech, JA, Nekola, JC. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519532.Google Scholar
Pigati, JS, McGeehin, JP, Muhs, DR, Bettis, EA III. 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76:114128.Google Scholar
Pócs, T. 1991. Növényföldrajz. In: Hortobágyi T, Simon T, editor. Növényföldrajz társulástan és ökológia. Budapest: Tankönyvkiadó. p 27166.Google Scholar
Rakonczay, Z. 2001. A Kiskunságtól Bácsalmásig A Kiskunság természeti értékei. Budapest: Mezőgazda Kiadó.Google Scholar
Reille, M. 1992. Pollen et Spores d’Europe et d’Afrique du Nord. Marseille: Laboratoirede Botanique Historique et Palynologie.Google Scholar
Reille, M. 1995. Pollen et Spores d’Europe et d’Afrique du Nord Supplement 1. Marseille: Laboratoirede Botanique Historique et Palynologie.Google Scholar
Reille, M. 1998. Pollen et Spores d’Europe et d’Afrique du Nord Supplement 2. Marseille: Laboratoirede Botanique Historique et Palynologie.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guil- derson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, CSM, Turney, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Richardson, LL, Aguilar, C, Nealson, KH. 1988. Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnology and Oceanography 33:352363.Google Scholar
Sokal, RR, Rohlf, FJ. 1995. Biometry: The Principles and Practice of Statistics in Biological Research. New York: WH Freeman. 495 Google Scholar
Sparks, BW. 1961. The ecological interpretation of Quaternary non-marine Mollusca. Proceedings of the Linnean Society of London 172:7180.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:614621.Google Scholar
Sümeghy, J. 1944. A Tiszántúl Magyar Tájak földtani leírása. 6 Magyar Királyi Földtani Intézet kiadványa Budapest.Google Scholar
Sümeghy, J. 1953: A Duna-Tisza közének földtani vázlata . Földtani Intézet Évi Jelentése 1950–ről 233264.Google Scholar
Sümeghy, J. 1955. A magyarországi pleisztocén összefoglaló ismertetése . Földtani Intézet Évi Jelentése 1953–ról 395403.Google Scholar
Sümegi, P. 2003. Early Neolithic man and riparian environment in the Carpathian Basin. In: Jerem E, Raczky P, editors. Morgenrot der Kulturen. Budapest: Archaeoligua Press. p 5360.Google Scholar
Sümegi, P. 2007. Palaeogeographical background of the Mesolithic and Early Neolithic settlement in the Carpathian Basin. In: Kozlowski JK, Nowak M, editors. Mesolithic/Neolithic Interactions in the Balkans and in the Middle Danube Basin. Oxford: Archeopress. BAR International Series 1726:4553.Google Scholar
Sümegi, P, Hertelendi, E. 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15,000–70,000 BP years. Radiocarbon 40:855863.Google Scholar
Sümegi, P, Molnár, S. 2007. The Kiritó meander: sediments and the question of flooding. In: Whittle A, editor. The Ecsegfalva Project. Varia Archaeologica Hungarica sorozat XXI kötet MTA Régészeti Intézet, Budapest. p 6782.Google Scholar
Sümegi, P, Törőcsik, T, Jakab, G, Gulyás, S, Pomázi, P, Majkut, P, Páll, GD, Persaits, G, Bodor, E. 2009. The environmental history of Fenékpuszta with a special attention to the climate and precipitation of the last 2000 years. Journal of Environmental Geography 2:514.Google Scholar
Sümegi, P, Persaits, G, Gulyás, S, 2012. Woodland-grassland ecotonal shifts in environmental mosaics: lessons learnt from the environmental history of the Carpathian Basin (central Europe) during the Holocene and the Last Ice Age based on investigation of paleobotanical and mollusk remains, In: Myster RW, editor. Ecotones Between Forest and Grassland. New York: Springer Press. p 1757.Google Scholar
Tóth, K. 1979. Nemzeti Park a Kiskunságban. Budapest: Natura Kiadó Google Scholar
Tóth, K. 1996. 20 éves a Kiskunsági Nemzeti Park 1975–1995. Kecskemét: Kiskunság Nemzeti Park Igazgatóságának kiadványa.Google Scholar
Troels-Smith, J. 1955. Karakterisering af lose jordater (Characterization of unconsolidated sediments). Danmarks Geologiske Undersogelse serIV [10].Google Scholar
Újvári, G, Molnár, M, Novothny, Á, Páll-Gergely, B, Kovács, J, Várhegyi, A. 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quaternary Science Reviews 106:140154.Google Scholar
Wang, T, Surge, D, Walker, KJ. 2013. Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths SW Florida. Quaternary International 308–309:230241.Google Scholar
Walanus, A. 2008. Drawing the optimal depth-age curve on the basis of calibrated radiocarbon dates. Geochronometria 31:15.Google Scholar
Xu, B, Gu, Z, Han, J, Hao, Q, Lu, Y, Wang, L, Wu, N, Peng, Y. 2011. Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quaternary Geochronology 6:383389.Google Scholar
Supplementary material: File

Törőcsik et al. supplementary material

Törőcsik et al. supplementary material 1

Download Törőcsik et al. supplementary material(File)
File 9.5 KB
Supplementary material: File

Törőcsik et al. supplementary material

Törőcsik et al. supplementary material 2

Download Törőcsik et al. supplementary material(File)
File 39.5 KB
Supplementary material: File

Törőcsik et al. supplementary material

Törőcsik et al. supplementary material 3

Download Törőcsik et al. supplementary material(File)
File 9.4 KB