Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T03:23:52.912Z Has data issue: false hasContentIssue false

RADIOCARBON AND DENDROCHRONOLOGY APPLIED IN A LEGAL DISPUTE: A CASE FROM COLOMBIA

Published online by Cambridge University Press:  12 May 2020

Jorge I del Valle*
Affiliation:
Departamento de Ciencias Forestales, Universidad Nacional de Colombia, Medellín, Colombia
Jorge A Giraldo
Affiliation:
PhD student, Ecology, Universidad Nacional de Colombia, Medellín, Colombia
*
*Corresponding author. Email: jidvalle@unal.edu.co.

Abstract

In 2015 a dispute arose between an electricity company (EC) and smallholder of a teak plantation when the EC felled 80 trees (without consent of the owner) in a linear transect under a rural power-line-corridor (PLC), fragmenting the teak stand in two portions. The EC stated that there were no planted trees in the area when the PLC was established in 2008. The owner asserted he planted the stand in 2006 so in 2008 the company should have seen the planted trees. We used the bomb radiocarbon (14C) signal of three felled trees and dendrochronological dating of five trees, three felled by the EC and two felled by us in 2016, to do this study to determine the age. We found that the first growth rings were dated to 2005 both in the trees felled by the EC in 2015 and felled by us in 2016, one year before that reported by the owner (2006). This year corresponds to the wood present in the cuttings during the stand’s planting year. These facts are in agreement with the owner’s testimony. The plantation was 10 years old in 2015.

Type
Conference Paper
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019.

References

REFERENCES

Bernabei, M, Bontadi, J, Čufar, K, Baici, A. 2017. Dendrochronological investigation of the bowed string instruments at the Theatre Museum Carlo Schmidl in Trieste, Italy. Journal of Cultural Heritage 27:S55S62.CrossRefGoogle Scholar
Brienen, R, Schöngart, J, Zuidema, PA. 2016. Tree rings in the tropics: Insights into the Ecology and Climate Sensitivity of tropical trees. In: Goldstein, G, Santiago, SD, editors. Tropical tree physiology. Switzerland: Springer. p. 441461.Google Scholar
Cardoso, S, Sousa, VB, Quilhó, T, Pereira, H. 2015. Anatomical variation of teakwood from unmanaged mature plantations in East Timor. Journal of Wood Science 61(3):326333.CrossRefGoogle Scholar
Castaño, A. 2016. Anillos de crecimiento como herramienta en la determinación del tiempo adecuado para raleos en plantaciones de Tectona grandis [MS thesis]. Universidad Nacional de Colombia, Sede Medellín.Google Scholar
Cook, ER, Kairiukstis, LA, editors. 1990. Methods of dendrochronology: Applications in the environmental sciences. The Netherlands: Kluwer Academic Publishers. 414 p.CrossRefGoogle Scholar
D’Arrigo, R, Palmer, J, Ummenhofer, CC, Kyaw, NN, Krusic, P. 2011. Three centuries of Myanmar monsoon climate variability inferred from teak tree rings. Geophysical Research Letters 38(24):15.Google Scholar
de Camino, R, Morales, JP, editors. 2013. Las Plantaciones de Teca: Mitos y Realidades. Informe Técnico No 197. Turrialba, Costa Rica: Centro Agronómico Tropical de Investigacion y Eseñanza (CATIE). 392 p.Google Scholar
Deepak, MS, Sinha, SK, Rao, VV. 2010. Tree-ring analysis of teak (Tectona grandis L. f.) from western Ghats of India as a tool to determine drought years. Emirates Journal of Food and Agriculture 22(5):388397.CrossRefGoogle Scholar
del Valle, JI, Guarín, JR, Sierra, CA. 2014. Unambiguous and low-cost determination of growth rates and ages of tropical trees and palms. Radiocarbon 56(1):3952.CrossRefGoogle Scholar
Fritts, HC. 1976. Tree rings and climate. London: Academic Press. 567 p.Google Scholar
Grissino-Mayer, HD, Sheppard, PR, Cleaveland, MK. 2004. A dendroarchaeological re-examination of the “Messiah” violin and other instruments attributed to Antonio Stradivari. Journal of Archaeological Science 31(8):167174.CrossRefGoogle Scholar
Haneca, K, Verheyden, A, Beeckman, H, Gartne, H, Helle, G, Schleser, GH, editors. 2006. TRACE—tree rings in archaeology, climatology and ecology. Proceedings of the DENDROSYMPOSIUM 2006 April 20–22, 2006, Tervuren, Belgium. 301 p.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:20592072.CrossRefGoogle Scholar
Hughes, MK, Swetnam, TW, Diaz, HF, editors. 2011. Dendroclimatology: Progress and prospects. Dordrecht: Springer. 365 p.CrossRefGoogle Scholar
Husen, A, Pal, M. 2006. Variation in shoot anatomy and rooting behavior of stem cuttings in relation to age of donor plants in teak (Tectona grandis Linn. f.). New Forests 31(1):5773.CrossRefGoogle Scholar
Jakob, M. 2019. Debris-flow hazard assessments—a practitioner’s view. 7th International Conference on Debris-Flow Hazards Mitigation, June 10–13, 2019, Golden, Colorado, USA.Google Scholar
Jozsa, LA. 1985. Contribution of tree-ring dating and wood structure analysis to the forensic sciences. Journal of the Canadian Society of Forensic Science 18(4):200210.CrossRefGoogle Scholar
Kollert, W, Kleine, M. 2017. The global teak study. Analysis, evaluation and future potential of teak resources. Vienna: International Union of Forestry Organizations. IUFRO World Series Vol. 36.Google Scholar
Köse, N, Okan, T, Akkemik, Ü. 2018. Understanding the impact of illegal logging in Turkey: A case study in Juniperus in Skisehir. Baltic Forestry 24(1):109116.Google Scholar
Lehmann, EL, Arruda, MAZ. 2019. Minimalist strategies applied to analysis of forensic samples sing elemental and molecular analytical techniques: A review. Analytica Chimica Acta 1063:917.CrossRefGoogle Scholar
Miller, J. 2019. Methods and advances in the forensic analysis of contaminated rivers. International Conference on Energy, Environmental and Information System (ICENIS) 125:112. doi: 10.1051/e3sconf/201912501001.Google Scholar
Ng, CH, Lee, SL, Tnah, LH, Ng, KKS, Lee, CT, Diway, B, et al. 2017. Geographic origin and individual assignment of Shorea platyclados (Dipterocarpaceae) for forensic identification. PLoS ONE 12(4):e0176158. doi: 10.1371/journal.pone.0176158.CrossRefGoogle ScholarPubMed
Nocetti, M, Rozenberg, P, Chaix, G, MacChioni, N. 2011. Provenance effect on the ring structure of teak (Tectona grandis L.f.) wood by X-ray microdensitometry. Annals of Forest Science 68(8):13751383.CrossRefGoogle Scholar
Pokines, JT. 2018. Two cases of dendrochronology used to corroborate a forensic postmortem interval. Journal of Forensic Identification 68(4):457465.Google Scholar
Pumijumnong, N, Eckstein, D, Sass, U. 1995. Tree-ring research on Tectona grandis in northern Thailand. IAWA Journal 16(4):385392.CrossRefGoogle Scholar
Rao, KS, Rajput, KS. 1999. Seasonal behaviour of vascular cambium in teak (Tectona grandis) growing in moist deciduous and dry deciduous forests. IAWA Journal 20(1):8593.CrossRefGoogle Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):1299–304.Google Scholar
Richter, HG, Dallwitz, MJ. 2009. Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, Portuguese, and Spanish.Google Scholar
Rubino, DL, Baas, Ch. 2019. Dating buildings and landscapes with tree-ring analysis: An introduction with case studies. London: Taylor & Francis Group. 302 p.CrossRefGoogle Scholar
Schindelin, J, Arganda-Carreras, I, Frise, E, Cardona, A. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9(7):676682.CrossRefGoogle ScholarPubMed
Schöngart, J, Bräuning, A, Barbosa, A, Lisi, C, Oliveira, J. 2017. Dendroecological studies in the Neotropics: History, status and future challenges. In: Amoroso, M, Daniels, L, Baker, P, Camarero, J, editors. Dendroecology: Tree-ring analysis applied to ecological studies. Cham: Springer. p. 3569.CrossRefGoogle Scholar
Schweingruber, FH. 1988. Tree rings. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Skripkin, VV, Kovaliukh, NN. 1997. Recent developments in the procedures used at the SSCER laboratory for the routine preparation of lithium carbide. Radiocarbon 40(1): 211214.CrossRefGoogle Scholar
Skripkin, VV, Buzynnyi, MG. 2017. Teflon vials for precise C-14 in benzene measurements by LSC technique. Biological and Chemical Research 229233. doi: 10.13140/RG.2.2.21789.82405.Google Scholar
Speer, JH. 2010. Fundamentals of tree-ring reseach. Tucson (AZ): The University of Arizona Press.Google Scholar
Stenström, K, Skog, G, Georgiadou, E, Genberg, J, Johansson, A. 2011. A guide to radiocarbon units and calculations. Internal Report LUNFD6(NFFR-3111)/1-17/(2011). Lund, Sweden: Lund University. 17 p.Google Scholar
Stoffel, M, Bollschweiler, M. 2008. Tree-ring analysis in natural hazards research—an overview. Natural Hazards and Earth System Sciences 8:187202.CrossRefGoogle Scholar
Stoffel, M, Bollschweiler, M, Butler, DR, Luckman, BH, editors. 2010. Tree rings and natural hazards: a state-of-the-art. Dordrecht: Springer. 505 p.CrossRefGoogle Scholar
TRMM. 2011. TRMM Microwave imager precipitation profile L3 1 month 0.5 degree x 0.5 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Retrieved from https://disc.gsfc.nasa.gov/datacollection/TRMM_3A12_7.html. Google Scholar
UNODC (United Nations Office on Drugs and Crime). 2016. Best practice guide for forensic timber identification. International Consortium on Combating Wildlife Crime. Vienna: United Nations. 214 p.Google Scholar
Vásquez, A, Ramírez, A. 2005. Maderas comerciales en el valle de Aburra, Medellín: Área Metropolitana del Valle de Aburrá.Google Scholar
Wolodarsky-Franke, A, Lara, A. 2005. The role of “forensic” dendrochronology in the conservation of alerce (Fitzroya cupressoides ((Molina) Johnston)) forests in Chile. Dendrochronologia 22(3):235240.CrossRefGoogle Scholar
Worbes, M. 2002. One hundred years of tree-ring research in the tropics: A brief history and an outlook to future challenges. Dendrochronologia 20(1–2):217231.CrossRefGoogle Scholar
Worbes, M, Junk, WJ. 1989. Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503507.CrossRefGoogle Scholar