Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T23:24:39.589Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Mortars and Charcoals from Novae Bath Complex: Sequential Dissolution of Historical and Experimental Mortar Samples with Pozzolanic Admixture

Published online by Cambridge University Press:  14 July 2020

Danuta Michalska*
Affiliation:
Institute of Geology, Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, ul. Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
Małgorzata Mrozek-Wysocka
Affiliation:
Institute of Geology, Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, ul. Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
*
*Corresponding author. Email: danamich@amu.edu.pl.

Abstract

Carbonaceous mortars from Novae (Bulgaria) contain local loess, crushed bricks and ceramic dust (pozzolanic materials). The reaction between lime and pozzolanic additives occurs easily and affects the rate and course of leaching reaction of carbonates in orthophosphoric acid during the sample pretreatment for dating. The composition of the Bulgarian mortars does not allow for unambiguous conclusions about chronology, but together with the observations of experimental mortars, gives new guidelines in terms of pozzolanic mortar application for dating. The presented research illustrates the possible reasons of difficulties with obtaining the appropriate portion of gas for radiocarbon (14C) measurement. To verify the relative chronology of legionary baths complex in Novae, the charcoals samples were also dated in addition to the mortar.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

REFERENCES

Biernacki, A, Klenina, E. 2016. The labrum from the large legionary bathhouse of Novae (Moesia Inferior). Archaeologia Bulgarica XX(2):4556.Google Scholar
Biernacki, A, Klenina, E. 2010. Trade relations between the Lower Danube region and Mediterranean in the late Roman period: The ceramic evidence from Novae (Moesia Secunda). Oxford: BAR International Series 2185 (II), LRCW 3, Vol. II. p. 983–992.Google Scholar
Binda, L, Baronio, G. 1988. Survey of brick/binder adhesion in powdered brick mortars and plasters. Masonry International Journal 2(3):8792.Google Scholar
Boynton, RS. 1980. Chemistry and technology of lime and limestone. 2nd ed. New York: Wiley. p. 592.Google Scholar
Brock, F, Higham, TFG, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):102112.CrossRefGoogle Scholar
Bronk Ramsey, C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59(2):18091833.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Dotsika, E, Kyropoulou, D, Christaras, V, Diamantopoulos, G. 2018. δ13C and δ18O stable isotope analysis applied to detect technological variations and weathering processes of ancient lime and hydraulic mortars. Geosciences 8(339):132150.CrossRefGoogle Scholar
Faria-Rodrigues, P, Henriques, F. 2004. Current mortars in conservation. An overview. Restoration of Buildings and Monuments 10:609622.CrossRefGoogle Scholar
Elsen, J, Van Balen, K, Mertens, G. 2012. Hydraulicity in historic lime mortars: A review. In: Válek, J, Hughes, J, Groot, C, editors. Historic mortars. RILEM Bookseries, vol 7. Dordrecht: Springer. p. 125139.Google Scholar
Fotakiva, E, Minkov, M. 1966. Der Löß in Bulgarien. The loess of Bulgaria. Eiszeitalter und Gegenwart 17:8796.Google Scholar
Ghrici, M, Kenai, S, Meziane, E. 2006. Mechanical and durability properties of cement mortar with Algerian natural pozzolana. Journal of Material Science 41:69656972.CrossRefGoogle Scholar
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznan Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223–224:511.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-comparison Study (MODIS). Radiocarbon 59(6):18451858.10.1017/RDC.2017.112CrossRefGoogle Scholar
He, C, Osbaeck, B, Makovicky, E, 1995. Pozzolanic reactions of six principal clay minerals—activation reactivity assessments and technological effects. Cement and Concrete Research 25:1691–702.CrossRefGoogle Scholar
Hernández, H, García, FL, Hernández Cruz, LE, Jacuinde, AB. 2015. Kaolin bleaching by leaching using phosphoric acid solutions. Journal of the Mexican Chemical Society 59(3):198201.Google Scholar
Hristov, B, Atanasova, I, Teoharov, M. 2010. Minerals in Regosols from North Bulgaria. Bulgarian Journal of Agricultural Science 16(4):476481.Google Scholar
Jipa, DC. 2014. The conceptual sedimentary model of the Lower Danube Loess Basin: sedimentogenetic implications. Quaternary International 351:1424.CrossRefGoogle Scholar
Lin, JS, Lin, ZJ, Chen, JF. 2005. The ancient great earthquake and earthquake-resistance of the ancient buildings (towers, temples and bridges) in Quanzhou city (in Chinese). World Earthquake Engineering 21(2):159166.Google Scholar
Jordanova, D, Hus, J, Evlogiev, J, Geeraerts, R. 2008. Palaeomagnetism of the loess/palaeosol sequence in Viatovo (NE Bulgaria) in the Danube basin. Physics of the Earth and Planetary Interiors 167(1–2):7183.CrossRefGoogle Scholar
Lancaster, LC. 2005. Concrete vaulted construction in imperial Rome: Innovations in context. Cambridge University Press.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brock, F, Sonck-Koota, P, Pehkonen, M, Suksi, J. 2011. Problems in radiocarbon dating of Roman pozzolana mortars. Commentationes Humanarum Litterarum 128:214230.Google Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, JAQ, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research B 294:246251.CrossRefGoogle Scholar
Matias, G, Faria, P, Torres, I. 2014. Lime mortars with heat treated clays and ceramic waste: A review. Construction and Building Materials 73:125136.CrossRefGoogle Scholar
Michalska, D. 2014. Mortar in terms of archaeometric research. In: Michalska, D, Szczepaniak, M, editors. Geoscience in archaeometry: Methods and case studies. Poznań: Wydawnictwo Naukowe Bogucki. p. 123132. ISBN 978-83-7986-046-3.Google Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research B 361: 431439.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59(6):18911906.CrossRefGoogle Scholar
Nikolov, T, Minkovska, V. 2012. The Lower Cretaceous in Bulgaria: A review. Revue de Paleobiologie, Geneve 11:7787.Google Scholar
Nonni, S, Marzaioli, F, Mignardi, S, Passariello, I, Capano, M, Terrasi, F. 2017. Radiocarbon dating of mortars with a pozzolana aggregate using the Cryo2Sonic protocol to isolate the binder. Radiocarbon 60(2):121.Google Scholar
Pesce, LG. 2010. Thermal activation of kaolinite used as hydraulic additive of old lime mixtures: a literature study. Proceedings of the 2nd Conference and of the Final Workshop of RILEM TC 203-RHM. RILEM. p. 293300.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Roy, DM, Arjunan, P, Silsbee, MR. 2001. Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research 31:1809 1813.10.1016/S0008-8846(01)00548-8CrossRefGoogle Scholar
Siddall, R. 2011. From kitchen to bathhouse: The use of waste ceramics as pozzolanic additives in Roman mortars. In: Ringbom, A, Hohlfelder, RL, editors. Building Roma Aeterna. Helsinki: The Finnish Society of Sciences and Letters. p. 152168.Google Scholar
Siegesmund, S, Snethlage, R, editors. 2011. Stone in architecture: Properties, durability. Springer Science & Business Media. 552 p.CrossRefGoogle Scholar
Stoyanow, Ts, Filipov, L, 1990. Geological Map of Bulgaria in Scale 1:100 000, map sheet Svisthov.Google Scholar
Stykova, K, Ivanov, M. 2004. New data about the stratigraphy of the Paleogene in central north Bulgaria. Comptes rendus de l/Academie bulgare de Sciences, Geologie 57(12):7582.Google Scholar
Tantawy, MA, Alomari, AA. 2019. Extraction of alumina from Nawan kaolin by acid leaching. Oriental Journal of Chemistry 35(3):10131021.CrossRefGoogle Scholar
Teutonico, JM, McCaig, I, Burns, C, Ashurst, J, 1994. The Smeaton project—dfactors affecting the properties of lime-based mortars. APT Bulletin: The Journal of Preservation of Technology 25:3249.CrossRefGoogle Scholar
Tie, FD. 2004. Conservation and restoration of wall paintings of early Western Han Dynasty: Investigation of conservation history and actuality. Sci. Conserv. Archaeol. 16(1):4751. In Chinese.Google Scholar
Trąbska, J, Trybalska, B. 2007. Microstructure of historical lime and lime-hydraulic mortars: From setting to corrosion. Analecta Archaeologica Ressoviensia 2:169188.Google Scholar
Woszczyk, M, Szczepaniak, M. 2008. Reevaluation of the Scheibler method and its usefulness in the analysis of carbonate content in lake sediments. In: Bajkiewicz-Grabowska, E, Borowiak, D, editors. Anthropogenic and natural transformations of lakes, 2. Gdańsk: Wyd. KLUG-PTLimn. p. 223225.Google Scholar
Yang, F, Zhang, W, Pan, BJ, Zeng, YY. 2009. Traditional mortar represented by sticky rice lime mortar—one of the great inventions in ancient China. Science in China Series E: Technological Sciences 52(6):16411647.Google Scholar
Yang, F, Zhang, B, Ma, Q. 2010. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction. Accounts of Chemical Research 43(6):936944.CrossRefGoogle ScholarPubMed
Yang, H, Che, Y, Leng, F. 2018. Calcium leaching behavior of cementitious materials in hydrochloric acid solution. Scientific Reports 8: 8806.CrossRefGoogle ScholarPubMed
Zendri, E, Lucchini, V, Biscontin, G, Morabito, ZM. 2004. Interaction between clay and lime in “cocciopesto” mortars: A study by 29Si MAS spectroscopy. Applied Clay Science 25(1–2):17.CrossRefGoogle Scholar
Supplementary material: Image

Michalska and Mrozek-Wysocka supplementary material

Michalska and Mrozek-Wysocka supplementary material 1

Download Michalska and Mrozek-Wysocka supplementary material(Image)
Image 2.5 MB
Supplementary material: File

Michalska and Mrozek-Wysocka supplementary material

Michalska and Mrozek-Wysocka supplementary material 2

Download Michalska and Mrozek-Wysocka supplementary material(File)
File 45.1 KB