Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T18:30:05.541Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Recent Intertidal Microbial Mats on Atoll Rims

Published online by Cambridge University Press:  09 February 2016

Jean Trichet
Affiliation:
391 rue de Lorette, F-45160 Olivet, France
Christine Hatté*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (UMR 8212 CEA/CNRS/UVSQ), Domaine du CNRS, F-91198 Gif-sur-Yvette Cedex, France
Michel Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (UMR 8212 CEA/CNRS/UVSQ), Domaine du CNRS, F-91198 Gif-sur-Yvette Cedex, France
*
3Corresponding author. Email: Christine.Hatte@lsce.ipsl.fr.

Abstract

Microbial mats (kopara in Polynesian) that develop in shallow brackish to hypersaline ponds on the rims of atolls were investigated for their accumulation process and rate. Two sequences of ∼30-cm-deep kopara, composed of 7 and 5 layers distinguished by their colors and sedimentological facies were collected in 1996 from the Tetiaroa atoll, French Polynesia. The combination of radiocarbon activity measurements on both organic and carbonate constituents, reservoir effect estimation, and comparison with the Southern Hemisphere atmospheric bomb-peak 14C record allowed us to establish a fine chronology of the layer successions documenting the mode of formation, erosion, and restoration of these microbial mat deposits.

Type
Oceanic Carbon Cycle
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abed, RMM, Kohls, K, de Beer, D. 2007. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Environmental Microbiology 9(6):1384–92.Google Scholar
Arp, G, Helms, G, Karlinska, K, Schumann, G, Reimer, A, Reitner, J, Trichet, J. 2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, central Pacific. Geomicrobiology Journal 29(1):2965.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2): 4260.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Camoin, G, Gautret, P, Montaggioni, L, Cabioch, G. 1999. Nature and environmental significance of microbialites in Quaternary reefs: the Tahiti paradox. Sedimentary Geology 126(1–4):271304.Google Scholar
Camoin, G, Cabioch, G, Eisenhauer, A, Braga, JC, Hamelin, B, Lericolais, G. 2006. Environmental significance of microbialites in reef environments during the last deglaciation. Sedimentary Geology 185(3–4):277–95.Google Scholar
Decho, AW, Visscher, PT, Reid, RP. 2005. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology 219(1–2):7186.Google Scholar
Défarge, C, Trichet, J, Couté, A. 1994a. On the appearance of cyanobacterial calcification in modern stromatolites. Sedimentary Geology 94(1–2):11–9.Google Scholar
Défarge, C, Trichet, J, Maurin, A, Hucher, M. 1994b. Kopara in Polynesian atolls: early stages of formation of calcareous stromatolites. Sedimentary Geology 89(1–2):923.CrossRefGoogle Scholar
Défarge, C, Trichet, J, Jaunet, AM, Michel, R, Tribble, J, Sansone, F. 1996. Texture of microbial sediments revealed by cryo-scanning electron microscopy. Journal of Sedimentary Research 66(5):935–47.Google Scholar
Dupraz, C, Reid, RP, Braissant, O, Decho, AW, Norman, RS, Visscher, PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96:141–62.Google Scholar
Franks, J, Stolz, JF. 2009. Flat laminated microbial mat communities. Earth-Science Reviews 96(3):163–72.Google Scholar
Garcia-Pichel, F, Al-Horani, FA, Farmer, JD, Ludwig, R, Wade, BD. 2004. Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiology 2(1):4957.Google Scholar
Gischler, E, Gibs, MA, Oschmann, W. 2008. Giant Holocene freshwater microbialites, Laguna Bacalar, Quintana Roo, Mexico. Sedimentology 55(5): 1293–309.CrossRefGoogle Scholar
Heindel, K, Gibs, MA, Peckmann, J, Kuhnert, H, Westphal, H. 2010. Formation of deglacial microbialites in coral reefs off Tahiti (IODP310) involving sulfate-reducing bacterica. Palaios 25(10):618–25.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3): 1273–98.CrossRefGoogle Scholar
Irwin, H, Curtis, C, Coleman, M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial or organic-rich sediments. Nature 269(5625): 209–12.Google Scholar
Larrue, S, Chiron, T. 2010. Les îles de Polynésie française face à l'aléa cyclonique. Vertigo 10(3): http://vertigo.revues.org/10558.Google Scholar
Mao Che, L, Andréfouët, S, Bothorel, V, Guezennec, M, Rougeaux, H, Guezennec, J, Deslandes, E, Trichet, J, Matheron, R, Le Campion, T, Payri, C, Caumette, P. 2001. Physical, chemical and microbiological characteristics of microbial mats (kopara) in the South Pacific atolls of French Polynesia. Canadian Journal of Microbiology 47(11):9941012.Google Scholar
Reid, RP, James, NP, Macintyre, IG, Dupraz, CP, Burne, RV. 2003. Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49(1):299324.Google Scholar
Reid, RP, Lopes Gaspar, AP, Bowlin, EM, Custals, L, Andres, MS. 2011. Microbialites and sediments: a 2-year record of burial and exposure of stromatolites and thrombolites at Highborne Cay Bahamas. In: Tewari, VC, Seckbach, J, editors. Stromatolites: Interaction of Microbes with Sediments. Dordrecht: Springer. p 407–25.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, WJ, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004a. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004b. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):1299–304.Google Scholar
Spadafora, A, Perri, E, McKenzie, JA, Vasconcelos, C. 2010. Microbial biomineralization processes forming Ca: Mg carbonate stromatolites. Sedimentology 57(1):2740.Google Scholar
Sprachta, S, Camoin, G, Golubic, S, Le Campion, T. 2001. Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 175(1–4):103–24.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Trichet, J, Défarge, C, Tribble, J, Tribble, G, Sansone, F. 2001. Christmas Islands lagoonal lakes: models for the deposition of carbonate evaporite-organic laminated sediments. Sedimentary Geology 140(1–2): 177–89.Google Scholar
van Lith, Y, Warthmann, R, Vasconcelos, C, McKenzie, JA. 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite. Geobiology 1(1):71–9.Google Scholar
Westphal, H, Heindel, K, Brandano, M, Peckmann, J. 2010. Genesis of microbialites as contemporaneous framework components of deglacial coral reefs, deglacial of Tahiti (IODP 310). Facies 56(3):337–52.Google Scholar