Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T03:41:54.914Z Has data issue: false hasContentIssue false

Atmospheric Radiocarbon Calibration Beyond 11,900 cal BP from Lake Suigetsu Laminated Sediments

Published online by Cambridge University Press:  18 July 2016

Hiroyuki Kitagawa
Affiliation:
Institute for Hydrospheric-Atmospheric Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan. Email: Kitagawa@ihas.nagoya-u.ac.jp
Johannes van der Plicht
Affiliation:
Centre for Isotope Research, Groningen University, Nijenborgh 4, 9747 AG Groningen, the Netherlands. Email: plicht@phys.rug.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents an updated atmospheric radiocarbon calibration from annually laminated (varved) sediments from Lake Suigetsu (LS), central Japan. As presented earlier, the LS varved sediments can be used to extend the radiocarbon time scale beyond the tree ring calibration range that reaches 11,900 cal BP. We have increased the density of 14C measurements for terrestrial macrofossils from the same core analyzed previously. The combined data set now consists of 333 measurements, and is compared with other calibration data.

Type
Varve Chronologies
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Bard, E, Arnold, M, Hamelin, B, Tisneart-Laborde, , Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of coral: An updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.Google Scholar
Burr, GS, Beck, JW, Taylor, FW, Récy, J, Edwards, RL, Cabioch, G, Corrège, T, Donahue, DJ, O'Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 cal BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):1085–92.Google Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DL, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 4C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260:962–7.CrossRefGoogle Scholar
Goslar, T, Arnold, M, Tisnerat-Laborde, N, Czernik, J, Wieckowski, K. 2000a. Variation of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature 403:877–80.Google Scholar
Goslar, T, Arnold, M, Tisnerat-Laborde, , Hatte, C, Paterne, M, Ralska-Jasiewiczowa, M. 2000b. Radiocarbon calibration by means of varves versus 14C ages of terrestrial macrofossils from Lake Gościąż and Lake Perespilno, Poland. Radiocarbon. This issue.CrossRefGoogle Scholar
Hajdas, I, Ivy, SD, Beer, J, Bonani, G, Imboden, D, Lotter, AF, Sturm, M, Suter, M. 1993. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP. Climatic Dynamics 9:107–16.CrossRefGoogle Scholar
Hajdas, I, Zolischka, B, Ivy-Ochs, SD, Beer, J, Bonani, , Leroy, SAG, Negendank, JW, Ramrath, M, Suter, M. 1995. AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quaternary Science Reviews 14:137–43.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgrian, M, Southon, J, Peterson, LC, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998a. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science 279:1178–90.Google Scholar
Kitagawa, H, van der Plicht, J. 1998b. A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the radiocarbon calibration curve. Radiocarbon 40(1):505–15.Google Scholar
Kromer, B, Spurk, M. 1998. Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP. Radiocarbon 40(3):1117–25.Google Scholar
Schramm, A, Stein, M, Goldstein, SL. 2000. Calibration of the 14C time scale to >40 ka by 234U-230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 149:121–9.Google Scholar
Stein, M, et al. 2000. Radiocarbon calibration beyond the dendrochronology range. Radiocarbon. This issue.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, HH, Kromer, B. 1998. Revisions and extensions of the Hohenheim oak and pine chronologies: new evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3):1107–16.CrossRefGoogle Scholar
Takemura, K, Kitagawa, H, Hayashida, A, Yasuda, Y. 1994. Sediment facies and chronology of core samples from lake Mikata, Lake Suigetsu and Kurota Lowland, central Japan: sedimentary environment in Mikata Lowland since the last interglacial time. Journal of Geography 103(3):233–42.Google Scholar
van der Plicht, J, Aerts, A, Wijma, S, Zondervan, A. 1995. First results from the Groningen AMS facility. Radiocarbon 37(2):657–61.CrossRefGoogle Scholar
Vogel, JC, Kronfeld, J. 1997. Calibration of radiocarbon dates for the late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39(1):2732.Google Scholar
Voelker, AHL, Sarnthein, M, Grootes, PM, Erlenkeuser, H, Laj, C, Mazaud, A, Nadeau, M-J, Schleicher, M. 1998. Correlation of marine 14C ages from the Nordic sea with GISP2 isotope record implications for radiocarbon calibration beyond 25 ka BP. Radiocarbon 40(1):517–34.Google Scholar
Wijma, S, van der Plicht, S. 1997. The Groningen AMS tandetron. Nuclear Instruments and Method in Physics Research B123:218–20.Google Scholar
Wohlfarth, B. 1996. The chronology of the last termination: a review of radiocarbon dated, high-resolution terrestrial stratigraphy. Quaternary Science Reviews 15:267–84.Google Scholar