No CrossRef data available.
Published online by Cambridge University Press: 26 July 2016
In situ radiocarbon inorganic production and retention pathways are distinct from those of the more commonly used traditional organic/atmospheric 14C. In addition, a growing number of laboratories are extracting in situ cosmogenic 14C from quartz, using a variety of analytical techniques. As such, a flexible yet internally consistent set of procedures for data reduction that recognizes the unique nature of the in situ14C system is essential for reliable comparison of results among laboratories. This article thus presents a brief data reduction framework that can accommodate differences in both AMS and laboratory analytical techniques.