Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T02:43:29.010Z Has data issue: false hasContentIssue false

CLIMATIC OSCILLATIONS DURING MIS 3–2 RECORDED IN SETS OF 14C AND OSL DATES—A STUDY BASED ON DATA FROM POLAND

Published online by Cambridge University Press:  17 October 2022

Danuta J Michczyńska*
Affiliation:
Silesian University of Technology, Institute of Physics–CSE, Division of Geochronology and Environmental Isotopes, Gliwice, Poland
Danuta A Dzieduszyńska
Affiliation:
University of Łódź, Faculty of Geographical Sciences, Department of Geology and Geomorphology, Poland
Joanna Petera-Zganiacz
Affiliation:
University of Łódź, Faculty of Geographical Sciences, Department of Geology and Geomorphology, Poland
Lucyna Wachecka-Kotkowska
Affiliation:
University of Łódź, Faculty of Geographical Sciences, Department of Geology and Geomorphology, Poland
Dariusz Krzyszkowski
Affiliation:
University of Wrocław, Institute of Geography and Regional Development, Poland
Dariusz Wieczorek
Affiliation:
Polish Geological Institute – National Research Institute, Holy Cross Branch of Jan Czarnocki in Kielce, Poland
Małgorzata Ludwikowska-Kędzia
Affiliation:
Jan Kochanowski University, Institute of Geography and Environmental Sciences, Kielce, Poland
Piotr Gębica
Affiliation:
University of Rzeszów, Institute of Archaeology, Poland
Leszek Starkel
Affiliation:
Polish Academy of Sciences, Stanisław Leszczycki Institute of Geography and Spatial Organization, Kraków, Poland
*
*Corresponding author. Email: danuta.michczynska@polsl.pl

Abstract

Terrestrial environments tend to be characterized by an incomplete record of past conditions. For the MIS 3–2 periods, there is only one known site in Poland—Horoszki Duże—in which a probably continuous record of climate change has been preserved. However, this site does not have any high precision multi-proxy analyses. In the absence of continuous high-resolution records, we decided to gather and analyze scattered information. We assembled data originating from various sites in Poland and checked whether the available results of 14C and luminescence dating presented in the form of probability density distributions (PDF) and kernel density estimation (KDE) models would allow their reinterpretation. The data were compared to the Greenland isotope curve to see whether they were consistent with the hypothesis that the number of “warming-cooling” cycles recorded in the examined sediments was of the same order as in those ice-core records. Previously in Poland, usually only two interstadial periods (i.e., Hengelo and Denekamp, 36–38.6 and 28–32 14C kBP, respectively) have been identified in the discussed period. The joint analysis of data from a larger area revealed more warming-cooling events than recorded from individual sites.

Type
Conference Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased.

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Asmerom, Y, Polyak, VJ, Burns, SJ. 2010. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geoscience. Nature Publishing Group 3(2):114117. DOI: 10.1038/ngeo754.CrossRefGoogle Scholar
De, Beaulieu J, Reille, M. 1992. The last climatic cycle at La Grande Pile (Vosges, France) a new pollen profile. Quaternary Science Reviews 11(4):431438.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360. DOI: 10.1017/s0033822200033865.CrossRefGoogle Scholar
Bronk Ramsey, C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59(6): 18091833. DOI: 10.1017/RDC.2017.108.CrossRefGoogle Scholar
Burns, SJ, Fleitmann, D, Matter, A, Kramers, J, Al-Subbary, AA. 2003. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301(5638): 13651367. DOI: 10.1126/science.1086227.CrossRefGoogle Scholar
Çağatay, MN, Öğretmen, N, Damci, E, Stockhecke, M, Sancar, Eriş KK, Özeren, S. 2014. Lake level and climate records of the last 90ka from the Northern Basin of Lake Van, eastern Turkey. Quaternary Science Reviews 104:97116. DOI: 10.1016/j.quascirev.2014.09.027.CrossRefGoogle Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, JP, Sveinbjörnsdottir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218220. DOI: 10.1038/364218a0.CrossRefGoogle Scholar
Dzieduszyńska, DA. 2019. Timing of environmental changes of the Weichselian decline (18.0–11.5 ka cal BP) using frequency distribution of 14C dates for the Łódź region, Central Poland. Quaternary International 501:135146. DOI: 10.1016/j.quaint.2017.08.012.CrossRefGoogle Scholar
Dzieduszyńska, DA, Kittel, P, Petera-Zganiacz, J, Brooks, SJ, Korzeń, K, Krąpiec, M, Pawłowski, D, Płaza, DK, Płóciennik, M, Stachowicz-Rybka, R, Twardy, J. 2014. Environmental influence on forest development and decline in the Warta River valley (Central Poland) during the Late Weichselian. Quaternary International 324:99114. DOI: 10.1016/j.quaint.2013.07.017.CrossRefGoogle Scholar
Fleitmann, D, Cheng, H, Badertscher, S, Edwards, RL, Mudelsee, M, Göktürk, OM, Fankhauser, A, Pickering, R, Raible, CC, Matter, A, Kramers, J, Tüysüz, O. 2009. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters 36(19):15. DOI: 10.1029/2009GL040050.CrossRefGoogle Scholar
Gębica, P, Michczyńska, DJ, Starkel, L. 2015. Fluvial history of the Sub-Carpathian Basins (Poland) during the last cold stage (60–8 cal ka BP). Quaternary International 388:119141. DOI: 10.1016/j.quaint.2015.06.012.CrossRefGoogle Scholar
Genty, D, Blamart, D, Ouahdi, R, Gilmour, M, Baker, A, Jouzel, J, Van-Exter, S. 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421(6925): 833837. DOI: 10.1038/nature01391.CrossRefGoogle ScholarPubMed
Goslar, T, Kuc, T, Ralska-Jasiewiczowa, M, Różański, K, Arnold, M, Bard, E, van Geel, B, Pazdur, M, Szeroczyńska, K, Wicik, B, Wiȩckowski, K, Walanus, A. 1993. High-resolution lacustrine record of the late glacial/holocene transition in central Europe. Quaternary Science Reviews 12(5):287294. DOI: 10.1016/0277-3791(93)90037-M.CrossRefGoogle Scholar
Granoszewski, W. 2003. Late Pleistocene vegetation history and climatic changes at Horoszki Duże, eastern Poland: a palaeobotanical study. Acta Palaeobotanica 4: 395.Google Scholar
Huntley, B, Alfano, MJ, Allen, JRM, Pollard, D, Tzedakis, PC, de Beaulieu, JL, Grüger, E, Watts, B. 2003. European vegetation during marine oxygen isotope stage-3. Quaternary Research 59(2):195212. DOI: 10.1016/S0033-5894(02)00016-9.CrossRefGoogle Scholar
Kasse, C, Huijzer, AS, Krzyszkowski, D, Bohncke, SJP, Coope, G. 1998. Weichselian Late Pleniglacial and Late-glacial depositional environments, Coleoptera and periglacial climatic records from central Poland (Bełchatów). Journal of Quaternary Science 13(5):455469. DOI: 10.1002/(sici)1099-1417(1998090)13:5<455::aid-jqs398>3.0.co;2-t.3.0.CO;2-T>CrossRefGoogle Scholar
Krzyszkowski, D. 1990. Middle and Late Weichselian stratigraphy and palaeoenvironments in central Poland. Boreas 19(4): 333350. DOI: 10.1111/j.1502-3885.1990.tb00138.x.CrossRefGoogle Scholar
Krzyszkowski, D. 1991. Vistulian fluviatile sedimentation near Belchatow, central Poland. Bulletin – Polish Academy of Sciences: Earth Sciencesrth Sciences 39(3):311329.Google Scholar
Krzyszkowski, D, Alexandrowicz, WP, Bluszcz, A, Choma-Moryl, K, Czeczuga, B, Hercman, H, Jędrysek, M, Kuszell, T, Nawrocki, J, Pazdur, A. 1999. Chronologia zmian warunków sedymentacji późnovistuliańskich osadów jeziornych w Jaroszowie. In: Pazdur, A, Bluszcz, A, Stankowski, W, Starkel, L, editors. Geochronologia górnego czwartorzędu Polski w świetle datowań radiowęglowych i luminescencyjnych. WIND-J. Wojewoda: Wrocław. p. 113132.Google Scholar
Krzyszkowski, D, Alexandrowicz, WP, Bluszcz, A, Choma-Moryl, K, Goslar, T, Hercman, H, Jędrysek, M, Nawrocki, J, Pazdur, M. 2001. Middle and Late Weichselian stratigraphy and palaeoenvironments at Jaroszów, southwestern Poland. In: Krzyszkowski, D, editor. Late Cainozoic Stratigraphy and Palaeogeography of the Sudetic Foreland. WIND J. Wojewoda. p. 4972.Google Scholar
Krzyszkowski, D, Choma-Moryl, K, Kuszell, T, Malkiewicz, M, Pazdur, A. 1995. Vistuliańskie osady jeziorne w Jaroszowie, Przedgórze Sudeckie: wstępne wyniki i perspektywy dalszych badań. Przeglad Geologiczny 43(2):141146.Google Scholar
Krzyszkowski, D, Kuszell, T. 2007. Middle and Upper Weichselian pleniglacial fluvial erosion and sedimentation phases in southwestern Poland, and their relationship to Scandinavian Ice Sheet build-up and retreat. Annales Societatis Geologorum Poloniae 77:1738.Google Scholar
Lisiecki, LE, Raymo, ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1):117. DOI: 10.1029/2004PA001071.Google Scholar
Ludwikowska-Kędzia, M. 2000. Ewolucja środkowego odcinka doliny rzeki Belnianki w późnym glacjale i holocenie. Wydawnictwo Akademickie Dialog: Warszawa.Google Scholar
Ludwikowska-Kędzia, M. 2018. Litologia, geneza i stratygrafia osadów czwartorzędowych w południowej części Gór Świętokrzyskich. Uniwersytet Jana Kochanowskiego w Kielcach. Instytut Geografii: Kielce.Google Scholar
Marks, L, Makos, M, Szymanek, M, Woronko, B, Dzierżek, J, Majecka, A. 2019. Late Pleistocene climate of Poland in the mid-European context. Quaternary International 504:2439. DOI: 10.1016/j.quaint.2018.01.024.CrossRefGoogle Scholar
Michczyńska, DJ, Michczyński, A, Pazdur, A. 2007. Frequency distribution of radiocarbon dates as a tool for reconstructing environmental changes. Radiocarbon 49(2):799806.CrossRefGoogle Scholar
Michczyńska, DJ, Pazdur, A. 2004. Shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in the Late Glacial and Holocene. Radiocarbon 46(2):733744. DOI: 10.1017/S0033822200035773.CrossRefGoogle Scholar
Moseley, GE, Spötl, C, Svensson, A, Cheng, H, Brandstätter, S, Edwards, RL. 2014. Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology 42(12):10431046. DOI: 10.1130/G36063.1.CrossRefGoogle Scholar
Petera, J. 2002. Vistuliańskie osady dolinne w basenie uniejowskim i ich wymowa paleogeograficzna. Acta Geographica Lodziensia 83:8164.Google Scholar
Pross, J, Koutsodendris, A, Christanis, K, Fischer, T, Fletcher, WJ, Hardiman, M, Kalaitzidis, S, Knipping, M, Kotthoff, U, Milner, AM, Müller, UC, Schmiedl, G, Siavalas, G, Tzedakis, P, Wulf, S. 2015. The 1.35-Ma-long terrestrial climate archive of Tenaghi Philippon, northeastern Greece: evolution, exploration, and perspectives for future research. Newsletters on Stratigraphy 48(3):253276. DOI: 10.1127/nos/2015/0063.CrossRefGoogle Scholar
Rasmussen, SO, Bigler, M, Blockley, SP, Blunier, T, Buchardt, SL, Clausen, HB, Cvijanovic, I, Dahl-Jensen, D, Johnsen, SJ, Fischer, H, et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106: 1428. DOI: 10.1016/j.quascirev.2014.09.007.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4): 725757. DOI: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Rotnicki, K. 1987. Main phases of erosion and accumulation in the middle and lower Prosna valley in the last Glacial-Interglacial cycle. Geographia Polonica 53:5365.Google Scholar
Sadatzki, H, Dokken, TM, Berben, SMP, Muschitiello, F, Stein, R, Fahl, K, Menviel, L, Timmermann, A, Jansen, E. 2019. Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Science Advances 5(3):111. DOI: 10.1126/sciadv.aau6174.CrossRefGoogle ScholarPubMed
Sirocko, F, Knapp, H, Dreher, F, Förster, MW, Albert, J, Brunck, H, Veres, D, Dietrich, S, Zech, M, Hambach, U, et al. 2016. The ELSA-Vegetation-Stack: reconstruction of landscape evolution zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years. Global and Planetary Change. Elsevier B.V. 142:108135. DOI: 10.1016/j.gloplacha.2016.03.005.CrossRefGoogle Scholar
Słowiński, M, Zawiska, I, Ott, F, Noryśkiewicz, AM, Plessen, B, Apolinarska, K, Rzodkiewicz, M, Michczyńska, DJ, Wulf, S, Skubała, P, Kordowski, J, Błaszkiewicz, M, Brauer, A. 2017. Differential proxy responses to late Allerød and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland. Quaternary Science Reviews 158:94106. DOI: 10.1016/j.quascirev.2017.01.005.CrossRefGoogle Scholar
Spötl, C, Mangini, A, Richards, DA. 2006. Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quaternary Science Reviews 25(9–10):11271136. DOI: 10.1016/j.quascirev.2005.10.006.CrossRefGoogle Scholar
Starkel, L, Michczyńska, DJ, Gȩbica, P. 2017. Reflection of climatic changes during interpleniglacial in the geoecosystems of South-Eastern Poland. Geochronometria 44(1):202215. DOI: 10.1515/geochr-2015-0060.CrossRefGoogle Scholar
Starkel, L, Michczyńska, DJ, Gębica, P, Wieczorek, D, Krzyszkowski, D, Michczyński, A, Wachecka-Kotkowska, L, Ludwikowska-Kędzia, M, Superson, J. 2018. Zapis zmian klimatycznych i środowiskowych w interpleniglacjale w Polsce Południowej i Środkowej. In: Ludwikowska-Kędzia, M and Wiatrak, M (eds) XXV Konferencja, Stratygrafia Plejstocenu Polski, “Plejstocen Gór Świętokrzyskich”, 3–7 września 2018 r. Huta Szklana k. Bielin. p. 117120.Google Scholar
Starkel, L, Michczyńska, DJ, Krąpiec, M, Margielewski, W, Nalepka, D, Pazdur, A. 2013. Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria 40(1):121. DOI: 10.2478/s13386-012-0024-2.CrossRefGoogle Scholar
Twardy, J, Żurek, S, Forysiak, J, editors. 2010. Torfowisko Żabieniec: warunki naturalne, rozwój i zapis zmian paleoekologicznych w jego osadach. Bogucki Wydawnictwo Naukowe: Poznań.Google Scholar
Wachecka-Kotkowska, L, Krzyszkowski, D, Klaczak, K, Król, E. 2014. Middle Weichselian pleniglacial sedimentation in the Krasówka river palaeovalley, central Poland. Annales Societatis Geologorum Poloniae 84(4):323340.Google Scholar
Wachecka-Kotkowska, L, Krzyszkowski, D, Malkiewicz, M, Mirosław-Grabowska, J, Niska, M, Krzymińska, J, Myśkow, E, Raczyk, J, Wieczorek, D, Stoiński, A, Rzodkiewicz, M. 2018. An attempt to reconstruct the late Saalian to Plenivistulian (MIS6-MIS3) natural lake environment from the “Parchliny 2014” section, central Poland. Quaternary International 467:525. DOI: 10.1016/j.quaint.2016.06.013.CrossRefGoogle Scholar
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, CC, Dorale, JA. 2001. A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294(5550):23452348. DOI: 10.1126/science.1064618.CrossRefGoogle ScholarPubMed
Wohlfarth, B, Veres, D, Ampel, L, Lacourse, T, Blaauw, M, Preusser, F, Andrieu-Ponel, V, Kéravis, D, Lallier-Vergès, E, et al. 2008. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36(5):407410. DOI: 10.1130/G24600A.1.CrossRefGoogle Scholar
Žák, K, Richter, DK, Filippi, M, Živor, R, Deininger, M, Mangini, A, Scholz, D. 2012. Coarsely crystalline cryogenic cave carbonate—a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe. Climate of the Past 8(6):18211837. DOI: 10.5194/cp-8-1821-2012.CrossRefGoogle Scholar
Supplementary material: File

Michczyńska et al. supplementary material

Tables S1 and S2

Download Michczyńska et al. supplementary material(File)
File 168 KB