Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T15:20:28.506Z Has data issue: false hasContentIssue false

Comparing Continental Carbonates with Other Materials in Dating a Paleolake

Published online by Cambridge University Press:  18 July 2016

J. F. Garcia
Affiliation:
Radiocarbon Laboratory, University of Barcelona - Institut d'Estudis Catalans, C/ Diagonal 647 Barcelona 08028, Spain
J. S. Mestres
Affiliation:
Radiocarbon Laboratory, University of Barcelona - Institut d'Estudis Catalans, C/ Diagonal 647 Barcelona 08028, Spain
Gemma Rauret
Affiliation:
Radiocarbon Laboratory, University of Barcelona - Institut d'Estudis Catalans, C/ Diagonal 647 Barcelona 08028, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have studied the application of carbonates and organic matter to the radiocarbon dating of a paleolake. The results show a systematic apparent age shift of these materials with respect to contemporary wood. The apparent age of carbonates is evidently due to the hard-water effect, whereas the apparent age of organic matter, systematically younger than carbonates, is attributed to aquatic plants, which metabolize dissolved CO2. Terrestrial plants that deposit organic matter also cause apparent age discrepancies between carbonates and organic matter.

Type
II. Applied Isotope Geochemistry
Copyright
Copyright © The American Journal of Science 

References

Andrée, M., Oeschger, H., Siegenthaler, U., Riesen, T., Moell, M., Ammann, B. and Tobolski, K. 1986 14C dating of plant macrofossils in lake sediment. In Stuiver, M. and Kra, R.S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 411416.Google Scholar
Buchardt, B., and Fritz, P. 1980 Environmental isotopes as environmental and climatological indicators. In Fritz, P. and Fontes, J.-Ch., eds., Handbook of Environmental Isotope Geochemistry. Amsterdam, Oxford, N.Y., Elsevier Scientific: 473504.Google Scholar
Buddemeier, R. W., Okanoto, H. S., Hurd, D. C. and Hufen, T. H. 1972 Effects of solution and exchange on the radiocarbon dating sediments and natural waters. In Rafter, T. A. and Grant-Taylor, T. L., eds., Proceedings of the 8th International 14C Conference. Wellington, Royal Society of New Zealand C:7386.Google Scholar
Chen, Y., and Polach, H. 1986 Validity of 14C ages carbonates in sediments. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A):464472.Google Scholar
Duplessy, J. C., Delibrias, G., Turon, J. L., Pujol, C. and Duprat, J. 1981 Deglacial warming of the northeastern atlantic ocean: correlation with the paleoclimatic evolution of the European continent. Palaeogeography, Palaeoclimatology, Palaeoecology 35: 121144.Google Scholar
Evin, J. 1980 Materials of terrestrial origin used for radiocarbon dating. In Mook, W. G. and Walterbolk, H. T., eds., Proceedings of the International Symposium Archaeology and 14C. PACT 8–IV: 235276.Google Scholar
García, J. F. 1991 (ms.) Estudio y optimización del procedimiento de datación por 14C mediante el método del centelleo líquido. Ph.D. dissertation. Publicacions Universitat de Barcelona, Barcelona, p 303. ISBN 84-7875-089-4.Google Scholar
Gonfiantini, R. 1981 Stable isotope hydrology. Deuterium and oxygen-18 in water cycle. Technical Reports Series 210. Vienna, IAEA.Google Scholar
Grant-Taylor, T. L. 1972 Conditions for the use of calcium carbonate as a dating material. In Rafter, T. A. and Grant-Taylor, T. L., eds., Proceedings of the 8th International 14C Conference. Wellington, Royal Society of New Zealand G: 5659.Google Scholar
Krajcar-Bronić, I., Horvatinčić, N., Srdoč, D. and Obelić, B. 1986 On the initial C-14 activity of karst aquifers with short mean residence time. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 436440.Google Scholar
Martí, C. E. 1977 Altos valles de los ríos Aragón y Gallego. Trabajos sobre Neógeno-Cuaternario 6: 157165.Google Scholar
Menéndez, J. and Martí, C.E. 1973 Los sedimentos lacustres de Búbal (Alto Aragón). Pirineos 107: 4754.Google Scholar
Mestres, J. S., García, J. F. and Rauret, G. 1991 The radiocarbon laboratory at the University of Barcelona. Radiocarbon 33(1): 2334.Google Scholar
Montserrat, J. 1991 (ms.) Evolución Glaciar y Postglaciar del clima y la vegetación en la vertiente sur del Pirineo: Estudio palinológico. Ph.D. dissertation. Universidad de Barcelona: 115 p.Google Scholar
Mook, W. G. 1980 Carbon-14 hydrogeological studies. In Fritz, P. and Fontes, J. Ch., eds., Handbook of Environmental Isotope Geochemistry. Amsterdam, Oxford, N.Y., Elsevier Scientific: 4974.Google Scholar
Muller, A. B. and Mayo, A. L. 1986 13C variation in limestone on an aquifer-wide scale an its effects on groundwater 14C dating models. Radiocarbon 28(3): 10411054.Google Scholar
Pazdur, A., 1988 The relation between carbon isotope composition and apparent age of freshwater tufaceous sediment. Radiocarbon 30(1): 718.Google Scholar
Pazdur, A. and Pazdur, M. 1986 14C dating of calcareous tufas from different environments. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 534538.Google Scholar
Pazdur, A., Pazdur, M. and Szulc, J. 1988 Radiocarbon dating of Holocene calcareous tufa in southern Poland. Radiocarbon 30(2): 133151.Google Scholar
Siegenthaler, U. and Eicher, U. 1986 Stable oxygen and carbon isotope analyses. In Berglund, B. E., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. New York, John Wiley & Sons: 407422.Google Scholar
Srdoč, D., Obelić, B. and Horvatinčić, N. 1980 Radiocarbon dating of calcareous tufa: How reliable data can we expect?. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 858862.Google Scholar
Srdoč, D., Horvatinčić, N. and Obelić, B. 1983 Radiocarbon dating of tufa in paleoclimatic studies. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 421427.CrossRefGoogle Scholar
Srdoč, D., Krajcar-Bronić, I., Horvatinčić, N. and Obelić, B. 1986 Increase of 14C activity of dissolved inorganic carbon along a river course. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 515521.Google Scholar
Willkomn, H. and Erlenkensen, H. 1972 14C measurements of water, plants and sediments of lakes. In Rafter, T. A. and Grant-Taylor, T. L., eds., Proceedings of the 8th International 14C Conference. Wellington, Royal Society of New Zealand D: 112.Google Scholar