Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T08:37:18.794Z Has data issue: false hasContentIssue false

Correcting 14C Histograms for the Non-Linearity of the Radiocarbon Time Scale

Published online by Cambridge University Press:  18 July 2016

Ad Stolk
Affiliation:
Department of Physical Geography, University of Utrecht Heidelberglaan 2, 3508 TC Utrecht, The Netherlands
Koos Hogervorst
Affiliation:
Department of Physical Geography, University of Utrecht Heidelberglaan 2, 3508 TC Utrecht, The Netherlands
Henk Berendsen
Affiliation:
Department of Physical Geography, University of Utrecht Heidelberglaan 2, 3508 TC Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Large numbers of 14C dates of the base and top of Holocene peat layers may be plotted in 14C histograms in order to establish statistically a chronology of periods of essentially clastic sedimentation and peat formation. Due to the non-linearity of the 14C time scale in terms of calendar years, clustering of 14C dates on random peat growth may occur. This seriously hampers the interpretation of histograms. A quantitative method and computer program were developed to correct the histograms for this effect. The correction factor that has to be applied depends on the calibration curve and the interval width of the correction parameter dy. For peat samples, an interval width of 100 14C yr and a calibration curve based on a 100-yr moving average seems to be a reasonable choice.

Type
Research Article
Copyright
Copyright © The American Journal of Science 

References

Bakker, J P, 1954, Relative sea-level changes in northwest Friesland (Netherlands) since prehistoric times: Geol Mijnbouw, v 16, p 232246.Google Scholar
Bennema, J, 1954, Bodem- en zeespiegelbewegingen in het Nederlandse kustgebied: Boor Spade, v 7, p 197.Google Scholar
Berendsen, H J A, 1982, De genese van het landschap in het zuiden van de provincie Utrecht: Ph D dissert, Rijksuniv, Utrecht, Utrecht Geog Studies, v 25, 256 p.Google Scholar
Berendsen, H J A, 1984, Quantitative analysis of radiocarbon dates of the perimarine area in the Netherlands: Geol Mijnbouw, v 63, p 343350.Google Scholar
Brand, G, Hageman, B P, Jelgersma, S and Sindowski, K H, 1965, Die lithostratigraphische Unterteilung des marinen Holozäns an der Nordseeküste: Geol Jahrbuch, v 82, p 365384.Google Scholar
Damon, P E, Long, A and Wallick, E I, 1972, Dendrochronologic calibration of the carbon-14 timescale, in Rafter, T A and Grant-Taylor, T, eds, Internatl conf on 14C dating, 8th; Proc: Wellington, New Zealand, Royal Soc New Zealand, p 2871.Google Scholar
de Jong, A F M and Mook, W G, 1981, Natural C-14 variations and consequences for sea-level fluctuations and frequency analysis of periods of peat growth in van Loon, A J, ed, Quaternary geology, a farewell to A J Wiggers: Geol Mijnbouw, v 60, p 331336.Google Scholar
Geyh, M A, 1966, Versuch einer chronologischen Gliederung des marinen Holozäns an der Nordseeküste mit Hilfe der statistische Auswertung der 14C Daten: Deutsch Geol Gesell Zeitschr, v 118, p 351360.Google Scholar
Geyh, M A, 1971, Die Anwendung der C-14 Methode und anderer radiometrische Datierungsverfahren für das Quartär. Clausthaler Tektonische Hefte, v 11, 99 p.Google Scholar
Geyh, M A, 1980, Holocene sea-level history: Case study of the statistical evaluation of 14C dates, in Stuiver, M and Kra, R S, eds, Internatl 14C conf, 10th, Proc: Radiocarbon, v 22, no. 3, p 695704.Google Scholar
Griede, J W, 1978, Het ontstaan van Frieslands Noordhoek: Ph D dissert, Vrije Univ Amsterdam/Editions Rodopi, 186 p.CrossRefGoogle Scholar
Hageman, B P, 1969, Development of the western part of the Netherlands during the Holocene: Geol Mijnbouw, v 48, p 373388.Google Scholar
Jelgersma, S (ms), 1961, Holocene sea-level changes in the Netherlands: Ph D dissert, Leiden, Meded Geol Stichting, CVI-7, 100 p.Google Scholar
Klein, J, Lerman, J C, Damon, P E and Ralph, E K, 1982, Calibration of radiocarbon dates: Tables based on the concensus data of the Workshop on Calibrating the Radiocarbon Time Scale: Radiocarbon, v 24, no. 2, p 103150.CrossRefGoogle Scholar
Mook, W G, 1983, C-14 calibration curves depending on sample time width, in Internatl symposium C-14 and Archeology, 1st, Proc: PACT, Strasbourg, v 8, p 517525.Google Scholar
Mook, W G, de Jong, A F M and Geertsema, H, 1979, Archaeological implications of natural Carbon-14 variations: Palaeo Hist, v 21, p 918.Google Scholar
Mulder, E F J and Bosch, J H A, 1982, Holocene stratigraphy, radiocarbon datings and paleography of central and northern North-Holland (The Netherlands): Meded Rijks Geol Dienst, v 36, no. 3, p 111160.Google Scholar
Pearson, G W, Pilcher, J R, Baille, M G L, Corbett, D M and Qua, F, 1986, High-precision measurements of Irish oaks to show the natural variations from AD 1840 to 5210 bc, in Stuiver, M, and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, v 28, no. 2B, p 911934.Google Scholar
Pearson, G W and Stuiver, M, 1986, High-precision calibration of the radiocarbon time scale, 500–2500 bc, in Stuiver, M, and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, v 28, no. 2B, p 839861.Google Scholar
Ralph, E K, Michael, H N and Han, M C, 1973, Radiocarbon dates and reality: Masca Newsletter, v 9, p 120.Google Scholar
Renfrew, C and Clark, R, 1974, Problems of the radiocarbon calendar: Archaeometry, v 16, p 518.CrossRefGoogle Scholar
Roeleveld, W (ms), 1974, The Groningen coastal area: Ph D dissert, Amsterdam, 252 p.Google Scholar
Royal Statistical Society, 1955, Discussion: Jour Royal Statistical Soc, v A118, p 291.Google Scholar
Sherman, I, 1979, Statistical evaluation of sea-level data: Inf Bull IGCP Proj 61, no 1, p 611.Google Scholar
Stolk, A, Törnqvist, T E and Berendsen, H J A (ms), Holocene transgressions and regressions in The Netherlands — interpretation and evaluation of corrected 14C histograms: Ms in preparation.Google Scholar
Stuiver, M and Pearson, W G, 1986, High-precision calibration of the radiocarbon time scale, AD 1950–500 bc, in Stuiver, M and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, v 28, no. 2B, p 805838.Google Scholar
Suess, H E, 1970, Bristlecone-pine calibration of the radiocarbon time-scale 5200 BC to present, in Olsson, I U, ed, Radiocarbon variations and absolute chronology, Nobel symposium, 12th, Proc: New York, John Wiley & Sons, p 303311.Google Scholar
van de Plassche, O, 1985, Time-limit assessment of some Holocene transgressive and regressive periods in the northern Netherlands: Eiszeitalter & Gegenwart, v 35, p 4348.Google Scholar
van der Plicht, J and Mook, W G, 1989, Calibration of radiocarbon ages by computer, in Long, A and Kra, R S, eds, Internatl 14C conf, 13th, Proc: Radiocarbon, v 31, no. 3, in press.Google Scholar
Warner, R B, 1975, Some tables for users of radiocarbon dates, including the construction of equal-area bisymmetrical normal curves: Irish Archaeol Research Forum, v II, pt 2, p 2947.Google Scholar
Zagwijn, W H, 1983, Geological aspects of carbon-14 dating, in Internatl symposium C-14 and Archeology, 1st, Proc: Strasbourg, PACT, v 8, p 7190.Google Scholar