Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T20:14:25.579Z Has data issue: false hasContentIssue false

Development of an Automated System for Preparation of organic samples

Published online by Cambridge University Press:  18 July 2016

Christine Hatté*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
Jean-Jacques Poupeau
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
Jean-François Tannau
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
Martine Paterne
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
*
Corresponding author. Email: hatte@lsce.cnrs-gif.fr.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We constructed an automated system to transform organic samples to CO2, which included several options such as: combustion in 2 steps with collection of the 2 fractions, volatile fraction combustion, and 13C sampling. The process includes organic matter combustion, CO2 drying, quantification of the mass of carbon, CO2 collection in a glass vial, and eventually 13C sampling. The system is computer-controlled and -monitored. The apparent background age of the automated system reaches 0.191 ± 0.011 pMC (2 σ), equivalent to a 14C age of about 51,700 yr BP, and requires only 30 min of handling, instead of the several days needed when using a manual procedure.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Gröningen. Nuclear Instruments and Methods in Physics Research B123:221–5.Google Scholar
Aerts-Bijma, AT, van der Plicht, J, Meijer, HAJ. 2001. Automatic AMS sample combustion and CO2 collection. Radiocarbon 43(2A):293–8.CrossRefGoogle Scholar
Bird, M, Ayliffe, L, Fifield, L, Turney, C, Cresswell, R, Barrows, T, David, B. 1999. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41(2):127–40.CrossRefGoogle Scholar
Hatté, C, Morvan, J, Noury, C, Paterne, M. 2001. Is classical Acid-Alkali-Acid treatment responsible for contamination? An alternative proposition. Radiocarbon 43(2A):177–82.CrossRefGoogle Scholar
Hedges, REM, Humm, MJ, Foreman, J, van Klinken, J, Ramsey, CB. 1992. Developments in sample combustion to carbon dioxide, and in the Oxford AMS carbon dioxide ion source system. Radiocarbon 34(3):306–11.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Poupeau, J-J, Tannau, J-F, Paterne, M. 2001. Development of a semi-automated system for routine preparation of carbonate samples. Radiocarbon 43(2A):299304.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45(3):409–19.CrossRefGoogle Scholar