Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T03:47:13.921Z Has data issue: false hasContentIssue false

Diet and Radiocarbon Dating of Tollund Man: New Analyses of an Iron Age Bog Body from Denmark

Published online by Cambridge University Press:  19 November 2018

Nina H Nielsen*
Affiliation:
Museum Silkeborg, Hovedgårdsvej 7, 8600Silkeborg, Denmark
Bente Philippsen
Affiliation:
Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000Aarhus C, Denmark Centre for Urban Network Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, 8270Højbjerg, Denmark
Marie Kanstrup
Affiliation:
Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000Aarhus C, Denmark
Jesper Olsen
Affiliation:
Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000Aarhus C, Denmark Centre for Urban Network Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, 8270Højbjerg, Denmark
*
*Corresponding author. Email: nhn@museumsilkeborg.dk.

Abstract

Tollund Man is one of the most famous Iron Age bog bodies due to his well-preserved head. Since he was unearthed in 1950 in Bjældskovdal, Denmark, he has been subjected to several scientific investigations, but until now no attempts to reconstruct his general diet through isotope analyses have been conducted. Furthermore, previous radiocarbon (14C) analyses have only been able to date him broadly to the 3rd–4th century BC. In this study, stable isotope measurements (δ13C, δ15N) on bone collagen from Tollund Man’s femur and rib showed that the diet of Tollund Man was terrestrial-based and that the crops he ate probably were grown on manured fields. Accelerator mass spectrometry (AMS) 14C dates were obtained on both the <30kDa and >30kDa fractions of ultrafiltered collagen. Results showed that the ultrafiltration removed contamination from older substances from the burial environment. The femur was dated to 2330±23 BP, the rib to 2322±30 BP. These dates statistically agree with a previously published AMS 14C age on skin. By combining the new dates with the previous date of his skin it was possible to narrow down the age of Tollund Man to the period 405–380 cal BC (95.4% confidence interval).

Type
Methodological Advances
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd International Radiocarbon and Diet Conference: Aquatic Food Resources and Reservoir Effects, 20–23 June 2017, Aarhus, Denmark

References

REFERENCES

Ambrose, SH. 1993. Isotopic analysis of paleodiets: methodological and interpretive considerations. In: Sanford MK, editor. Investigations of Ancient Human Tissue. Philadelphia: Gordon and Breach Science Publishers. p 59130.Google Scholar
Ambrose, SH. 2000. Controlled diet and climate experiments on nitrogen isotope ratios of rats. In: Ambrose, SH, Katzenberg, MA. editors. Biogeochemical Approaches in Paleodietary Analysis. New York: Kluwer Academic Publishers/ Plenum Publishers. p 243259.Google Scholar
Ambrose, SH, Krigbaum, J. 2003. Bone chemistry and bioarchaeology. Journal of Anthropological Archaeology 22:193199.Google Scholar
Aaby, B 2006. Landskab og Vegetation omkring Bølling Sø siden sidste istid. In: BV Eriksen, editor. Stenalderstudier. Tidligt mesolitiske jæger og samlere i Sydskandinavien. Aarhus: Aarhus Universitetsforlag. p 161174.Google Scholar
Bevington, PR, Robinson, DK. 2003. Data reduction and error analysis for the physical sciences. 3rd ed. Boston, MA: McGraw-Hill.Google Scholar
Bogaard, A, Fraser, R, Heaton, THE, Wallace, M, Vaiglova, P, Charles, M, Jones, G, Evershed, RP, Styring, AK, Andersen, NH, Arbogast, R-M, Bartosiewicz, L, Gardeisen, A, Kanstrup, M, Maier, U, Marinova, E, Ninov, L, Schäefer, M, Stephan, E. 2013. Crop manuring and intensive land management by Europe’s first farmers. PNAS 110(31):1258912594.Google Scholar
Bonsall, C, Cook, G, Hedges, REM, Higham, TFG, Pickard, C, Radovanovic, I. 2004. Radiocarbon and stable isotope evidence of dietary change from the mesolithic to the middle ages in the iron gates: New results from Lepenski Vir. Radiocarbon 46(1):293300.Google Scholar
Brock, F, Bronk Ramsey, C, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.Google Scholar
Brock, F, Geoghegan, V, Thomas, B, Jurkschat, K, Higham, TFG. 2013. Analysis of bone “collagen” extraction products for radiocarbon dating. Radiocarbon 55(2):445463.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C, Higman, T, Bowles, A, Hedges, REM. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.Google Scholar
Brown, TA, Nelson, DE, Vogel, JC, Southon, JR. 1988. Improved collagen extraction by improved Longin method. Radiocarbon 30(2):171177.Google Scholar
Christensen, PM. 1997. Agerbrug i vikingetiden – et studie af fosfor i jorden. GeologiskNyt 4:1215.Google Scholar
Dalsgaard, K, Karlsen, AD, Larsen, L. 2000. Bonden og agerjorden. In: Dalsgaard K, Eriksen P, Jensen JV, Rømer JR, editors. Mellem hav og hede. Landskab og bebyggelse i Ulfbord herred indtil 1700. Aarhus: Aarhus Universitetsforlag. p. 87103.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806809.Google Scholar
Eriksson, G. 2004. Part-time farmers or hard-core sealers? Västerbjers studied by means of stable isotope analysis. Journal of Anthropological Archaeology 23(2):135162.Google Scholar
Fernandes, R, Grootes, P, Nadeau, M-J, Nehlich, O. 2015. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). American Journal of Physical Anthropology 158(2):325340.Google Scholar
Fischer, A, Olsen, J, Richards, M, Heinemeier, J, Sveinbjörnsdóttir, ÁE, Bennike, P. 2007. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. Journal of Archaeological Science 34:21252150.Google Scholar
Fischer, C. 1980. Moseligene fra Bjældskovdal. KUML. Årbog for Jysk Arkæologisk Selskab 1979:72044.Google Scholar
Fischer, C. 2012. Tollund Man. Gift to the Gods. Stroud: The History Press.Google Scholar
Frei, KM. 2017. Preliminary Strontium report: Tollund Man’s last years and months [unpublished report]. National Museum of Denmark.Google Scholar
Glob, PV. 1969. The Bog People: Iron-Age Man Preserved. London: Faber and Faber.Google Scholar
Hedges, RE, Clement, JG, Thomas, CDL, O’Connell, TC. 2007. Collagen turnover in the adult femoral mid‐shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology 133(2):808816.Google Scholar
Helbæk, H. 1950. Botanical study of the stomach contents of the Tollund Man. Aarbøger for Nordisk Oldkyndighed og Historie 1950:329341.Google Scholar
Jørkov, MLS. 2007. Drinking with the rich and dining with the poor in Roman Iron Age Denmark: A dietary and methodological study based on stable isotope analysis [unpublished PhD thesis]. Copenhagen University.Google Scholar
Kanstrup, M. 2008. Gastronomy – norm and variation. Dietary studies based on isotope analyses of skeletal remains from Viking Age graves at Galgedil on Northern Funen [unpublished MA dissertation]. Aarhus University.Google Scholar
Kanstrup, M, Holst, MK, Jensen, PM, Thomsen, IK, Christensen, BT. 2014. Searching for long-term trends in prehistoric manuring practice. δ15N analyses of charred cereal grains from the 4th to the 1st millennium BC. Journal of Archaeological Science 51:115125.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.Google Scholar
Mannering, U, Possnert, G, Heinemeier, J, Gleba, M. 2010. Dating Danish textiles and skins from bog finds by means of 14C AMS. Journal of Archaeological Science 37:261268.Google Scholar
Nielsen, NH. 2017. Øget fokus på forskning inden for arkæologien. Museum Silkeborg Årsskrift 2016:2934.Google Scholar
Nielsen, NH. 2018. Nyt fra den arkæologiske forskning 2017. Museum Silkeborg Årsskrift 2017:3946.Google Scholar
Nielsen, NH, Dalsgaard, K 2017. Dynamics of Celtic fields – a geoarchaeological investigation of Øster Lem Hede, western Jutland, Denmark. Geoarchaeology – An International Journal 32(3):414434.Google Scholar
Olsen, J, Heinemeier, J. 2009. AMS dating of human bone from the Ostorf cemetery in the light of new information on dietary habits and freshwater reservoir effects. Berichte der RGK 88:309322.Google Scholar
Olsen, J, Tikhomirov, D, Grosen, C, Heinemeier, J, Klein, M. 2016. Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59(3):905913.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1(24). Available at http://www.heritagesciencejournal.com/content/1/1/24 Google Scholar
Price, TD, Prangsgaard, K, Kanstrup, M, Bennike, P, Frei, KM. 2014. Galgedil: isotopic studies of a Viking cemetery on the Danish island of Funen, AD 800–1050. Danish Journal of Archaeology 3(2):129144.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments & Methods in Physics Research B 259:293302.Google Scholar
Schoeninger, M, DeNiro, MJ. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48:625639.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Talbot, MR. 2001. Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP, editors. Tracking Environmental Change Using Lake Sediments. Dordrecht: Kluwer Academic Publishers. p 401439.Google Scholar
Tauber, H. 1980. Kulstof-14 datering af moselig. KUML. Årbog for Jysk Arkæologisk Selskab 1979:7378.Google Scholar
Thorvildsen, K. 1951. Moseliget fra Tollund. Aarbøger for nordisk oldkyndighed og historie 1950:302310 Google Scholar
van der Plicht, J, van der Sanden, WAB, Aerts, AT, Streuerman, HJ 2004. Dating bog bodies by means of 14C-AMS. Journal of Archaeological Science 31:471491.Google Scholar
van der Sanden, WAB. 2013. Bog bodies: underwater burials, sacrifices and executions. In: Menotti F, O’Sullivan A, editors. The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press. p 401416.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26:687695.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293.Google Scholar
Zanello, M, Pallud, J, Jacqueline, S, Augias, A, Varlet, P, Devaux, B, Nielsen, O, Abi Haidar, D, Charlier, P. 2017. Endogenous fluorescence analysis: preliminary study revealing the potential of this non-invasive method to study mummified samples. International Journal of Osteoarchaeology 27:598605.Google Scholar