Article contents
Effect of Acidified Versus Frozen Storage on Marine Dissolved Organic Carbon Concentration and Isotopic Composition
Published online by Cambridge University Press: 26 July 2016
Abstract
The standard procedure for storing/preserving seawater dissolved organic carbon (DOC) samples after field collection is by freezing (–20°C) until future analysis can be made. However, shipping and receiving large numbers of these samples without thawing presents a significant logistical problem and large monetary expense. Access to freezers can also be limited in remote field locations. We therefore test an alternative method of preserving and storing samples for the measurement of DOC concentrations ([DOC]), stable carbon (δ13C), and radiocarbon (as ∆14C) isotopic values via UV photooxidation (UVox). We report a total analytical reproducibility of frozen DOC samples to be [DOC]±1.3 µM, ∆14C±9.4‰, and δ13C±0.1‰, comparable to previously reported results (Druffel et al. 2013). Open Ocean DOC frozen versus acidified duplicates were on average offset by ∆DOC±1.1 µM, ∆∆14C± –1.3‰, and ∆δ13C± –0.1‰. Coastal Ocean frozen vs. acidified sample replicates, collected as part of a long-term (380-day) storage experiment, had larger, albeit consistent offsets of ∆DOC±2.2 µM, ∆∆14C±1.5‰, and ∆δ13C± –0.2‰. A simple isotopic mass balance of changes in [DOC], ∆14C, and δ13C values reveals loss of semi-labile DOC (2.2±0.6 µM, ∆14C=–94±105‰, δ13C=–27±10‰; n=4) and semi-recalcitrant DOC (2.4±0.7 µM, ∆14C=–478±116‰, δ13C=–23.4±3.0‰; n=3) in Coastal and Open Ocean acidified samples, respectively.
- Type
- Chemical Pretreatment Approaches
- Information
- Radiocarbon , Volume 59 , Special Issue 3: Proceedings of the 22nd International Radiocarbon Conference (Part 2 of 2) , June 2017 , pp. 843 - 857
- Copyright
- © 2016 by the Arizona Board of Regents on behalf of the University of Arizona
Footnotes
Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015
References
REFERENCES
- 10
- Cited by