Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T15:34:37.887Z Has data issue: false hasContentIssue false

Experimental Determination of the 14C Initial Activity of Calcareous Deposits

Published online by Cambridge University Press:  18 July 2016

Ines Krajcar Bronić
Affiliation:
Rudjer Bošković Institute, P. O. Box 1016, 41001 Zagreb, Croatia
Nada Horvatinčić
Affiliation:
Rudjer Bošković Institute, P. O. Box 1016, 41001 Zagreb, Croatia
Dušan Srdoč
Affiliation:
Rudjer Bošković Institute, P. O. Box 1016, 41001 Zagreb, Croatia
Bogomil Obelić
Affiliation:
Rudjer Bošković Institute, P. O. Box 1016, 41001 Zagreb, Croatia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have reconstructed the initial activity of calcareous sediments by 1) measuring the 14C activity of recent pre-bomb-test calcareous deposits, 2) calculating the ratio of the 14C activity of the calcareous sediment to that of the adjacent coeval wood, and 3) extrapolating 14C activity of the deep lacustrine sediment layers to the surface, assuming a constant sedimentation rate. We show here that the uppermost sediment is affected by the global increase of atmospheric 14C activity due to thermonuclear bomb tests in the early 1960s. 14C activity of submerged aquatic plants showed values similar to 14C activity of DIC. Thus, organic residue of the sediment cannot be used for reliable 14C dating because of the unknown fraction of aquatic plant detritus. The initial activity, A0, obtained in a case study of the geochronology of carbonates in the Plitvice Lakes area, ranged from 70.5 to 72.2 pMC for Lake Prošće sediment, and from 75.9 to 76.7 pMC for Lake Kozjak sediment. These values also agree with calculated values based on the downstream increase of 14C activity of DIC in freshwater open to the atmosphere.

Type
II. Applied Isotope Geochemistry
Copyright
Copyright © The American Journal of Science 

References

Buchardt, B. and Fritz, P. 1980 Environmental isotopes as environmental and climatological indicators. In Fritz, P. and Fontes, J. Ch., eds., Handbook of Environmental Isotope Geochemistry 1. Amsterdam, Elsevier Scientific Publishing Co.: 545 p.Google Scholar
Dulinski, M. and Rozanski, K. 1990 Formation of 13C/12C isotope ratios in speleothems: A semi-dynamic model. Radiocarbon 32(1): 716.Google Scholar
Fontes, J. Ch. 1983 Dating of groundwater. In Guidebook on Nuclear Techniques in Hydrology. Technical Report Series 91, Vienna, IAEA: 285317.Google Scholar
Geyh, M. A. 1973 On the determination of the initial 14C content in groundwater. In Rafter, T. A. and Grant-Taylor, T., eds., Proceedings of the 8th International 14C Conference. Wellington, Royal Society of New Zealand: D58D69.Google Scholar
Horvatinčić, N., Srdoč, D., Šilar, J. and Tvrdikova, H. 1989 Comparison of the 14C activity of groundwater and recent tufa from karst areas in Yugoslavia and Czechoslovakia. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 884892.Google Scholar
Krajcar Bronić, I., Horvatinčić, N., Srdoč, D. and Obelić, B. 1986 On the initial 14C activity of karst aquifers with short mean residence time. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 436440.Google Scholar
Levin, I., Schuchard, J., Kromer, B. and Münnich, K. O. 1989 The continental European Suess effect. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 431440.Google Scholar
Marčenko, E., Srdoč, D., Golubić, S., Pezdič, J. and Head, M. J. 1989 Carbon uptake in aquatic plants deduced from their natural 13C and 14C content. In Long, A. and Kra, R.S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 785794.Google Scholar
Obelić, B., Krajcar Bronić, I., Srdoč, D. and Horvatinčić, N. 1986 Environmental 14C levels near the 632 MWe Nuclear Power Plant Krško in Yugoslavia. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 644648.Google Scholar
Pazdur, A. 1988 The relation between carbon isotope composition and apparent age of freshwater tufaceous sediments. Radiocarbon 30(1): 718.Google Scholar
Pazdur, A., Pazdur, M. F. and Szulc, J. 1988 Radiocarbon dating of holocene calcareous tufa in Southern Poland. Radiocarbon 30(2): 133151.Google Scholar
Pentecost, A., Thorpe, P. M., Harkness, D. D. and Lord, T. C. 1990 Some radiocarbon dates for tufa of the Craven district of Yorkshire. Radiocarbon 32(1): 9397.Google Scholar
Scharpenseel, H-W. and Becker-Heidmann, P. 1989 Shifts in 14C patterns of soil profiles due to bomb carbon, including effects of morphogenetic and turbation processes. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 627636.CrossRefGoogle Scholar
Srdoč, D. 1986 The response of hydrological systems to the variations of the 14C activity of the atmosphere. Nuclear Instruments and Methods B17: 545549.Google Scholar
Srdoč, D., Horvatinčić, N., Ahel, M., Giger, W., Schaffner, C., Krajcar Bronić, I., Petricioli, D., Pezdič, J., Marčenko, E. and Plenković-Moraj, A. 1992 Anthropogenic influence on the 14C activity and other constituents of recent lake sediments: A case study. Radiocarbon, this issue.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar Bronić, I. and Sliepčević, A. 1987 Rudjer Bošković Institute radiocarbon measurements IX. Radiocarbon 29(1): 115134.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B. and Sliepčević, A. 1983 Radiocarbon dating of tufa in paleoclimatic studies. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 421427.Google Scholar
Srdoč, D., Krajcar Bronić, I., Horvatinčić, N. and Obelić, B. 1986a Increase of 14C activity of dissolved inorganic carbon along a river course. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 515521.Google Scholar
Srdoč, D., Obelić, B., Horvatinčić, N., Krajcar Bronić, I., Marčenko, E., Merkt, J., Wong, H. K. and Sliepčević, A. 1986b Radiocarbon dating of lake sediment from two karst lakes in Yugoslavia. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 495502.Google Scholar
Srdoč, D., Obelić, B., Horvatinčić, N., Krajcar Bronić, I. and Sliepčević, A. 1989 Rudjer Bošković Institute radiocarbon measurements XI. Radiocarbon 31(1): 8598.Google Scholar
Thorpe, P. M., Otlet, R. L. and Sweeting, M. M. 1980 Hydrological implications from 14C profiling of UK tufa. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 897908.Google Scholar