Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T02:35:44.976Z Has data issue: false hasContentIssue false

Frequency Distribution of 14C Ages for Chronostratigraphic Reconstructions: Alaska Region Study Case

Published online by Cambridge University Press:  18 July 2016

Danuta J Michczyńska*
Affiliation:
GADAM Centre of Excellence, Institute of Physics, Silesian University of Technology, Gliwice, Poland
Irka Hajdas
Affiliation:
Laboratory for Ion Beam Physics, ETH Zurich, Switzerland
*
Corresponding author. Email: Danuta.Michczynska@polsl.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this study, we test the possibility of using databases of radiocarbon ages to estimate boundaries of climatic chronozones. The Alaska region was chosen and compared with chronozones of 2 European countries: Poland and the Netherlands. The study included setting up a database of 14C ages published for climatic records from Alaska. Some 974 14C determinations on organic samples were selected and used to establish chronozones for the Late Glacial and the Holocene for the Alaska region. The selected data were calibrated and a summed probability density function (PDF) was calculated. The shape analysis of the constructed frequency distribution of 14C dates on calendar timescales together with the assumption about preferential sampling seems to be a useful tool for establishing calendar ages for boundaries of climatic periods, i.e. chronozones.

Type
Calibration, Data Analysis, and Statistical Methods
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

References

Ager, TA. 2003. Late Quaternary vegetation and climate history of the central Bering land bridge from St. Michael Island, western Alaska. Quaternary Research 60(1):1932.CrossRefGoogle Scholar
Ager, TA, Philips, RL. 2008. Pollen evidence for Late Pleistocene Bering land bridge environments from Norton Sound, northeastern Bering Sea, Alaska. Arctic, Antarctic and Alpine Research 40(3):451–61.CrossRefGoogle Scholar
Allaby, A, Allaby, M. 1999. A Dictionary of Earth Sciences [WWW document]. http://www.encyclopedia.com.Google Scholar
Anderson, PM, Brubaker, LB. 1993. Holocene vegetation and climate histories of Alaska. In: Wright, HE, Kutzbach, JE, Webb, T III, Ruddiman, WF, Street-Perrott, FA, Bartlein, PJ, editors. Global Climates since the Last Glacial Maximum. Minneapolis: University of Minnesota Press.Google Scholar
Axford, Y, Kaufman, DS. 2004. Late Glacial and Holocene glacier and vegetation fluctuations at Little Swift Lake, southwestern Alaska, U.S.A. Arctic, Antarctic, and Alpine Research 36(2):139–46.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.CrossRefGoogle Scholar
Brook, EJ, Sowers, T, Orchardo, J. 1996. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273(5278):1087–91.CrossRefGoogle Scholar
Buck, CE, Cavanagh, WG, Litton, CD. 1996. The Bayesian Approach to Interpreting Archaeological Data. Chichester: Wiley. 402 p.Google Scholar
Buck, CE, Christen, JA, James, GN. 1999. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7 :http://intarch.ac.uk/journal/issue7/buck_index.html.Google Scholar
Daly, C. 2002. Alaska average monthly or annual precipitation, 1961–90. Corvallis: Spatial Climate Analysis Service at Oregon State University (SCAS/OSU).Google Scholar
Goslar, T, Arnold, M, Tisnérat-Laborde, N, Hatté, C, Paterne, M, Ralska-Jasiewiczowa, M. 2000. Radiocarbon calibration by means of varves versus 14C ages of terrestrial macrofossils from Lake Gościąż and Lake Perespilno, Poland. Radiocarbon 42(1):335–48.CrossRefGoogle Scholar
Hoek, W. 1997. Palaeogeography of Lateglacial Vegetations. Aspects of Lateglacial and Early Holocene Vegetation, Abiotic Landscape and Climate in the Netherlands. Utrecht: Netherlands Geographical Studies 230. 147 p.Google Scholar
Hoek, WZ. 2008. The Last Glacial-Interglacial transition. Episodes 31(2):226–9.CrossRefGoogle Scholar
Lowe, JJ, Rasmussen, SO, Björck, S, Hoek, WZ, Steffensen, JP, Walker, MJC, Yu ZC, the INTIMATE group. 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27(1–2):617.CrossRefGoogle Scholar
Macklin, MG, Benito, G, Gregory, KJ, Johnstone, E, Lewin, J, Michczyńska, DJ, Soja, R, Starkel, L, Thorndycraft, VR. 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66(1–2):145–54.CrossRefGoogle Scholar
Mangerud, J, Anderson, ST, Berglund, BE, Danner, JJ. 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3:109–28.CrossRefGoogle Scholar
Michczyńska, DJ. 2003. Statystyczna analiza danych radiowęglowych w badaniach zmian środowiska wnaturalnego w przeszłości (Statistical analysis of radiocarbon data for investigations of past natural environmental changes). PhD thesis. Institute of Physics, Silesian University of Technology. 120 p. In Polish.Google Scholar
Michczyńska, DJ, Pazdur, A. 2004. A shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in the Late Glacial and Holocene. Radiocarbon 46(2):733–44.CrossRefGoogle Scholar
Michczyńska, DJ, Michczyński, A, Pazdur, A. 2007. Frequency distribution of radiocarbon dates as a tool for reconstructing environmental changes. Radiocarbon 49(2):799–806.CrossRefGoogle Scholar
Michczyńska, DJ, Michczyński, A, Pazdur, A, Starkel, L. 2008. Kalendarzowe wartości granic chronostratygraficznych dla terenu Polski oszacowane na pod-stawie dużych zbiorów dat 14C (Calendar values of chronostratigraphical boundaries for Poland based on large sets of 14C dates). Prace Komisji Paleogeografii Czwarorzedu PAU VI:163–71. In Polish.Google Scholar
Nakagawa, T, Kitagawa, H, Yasuda, Y, Tarasov, PE, Gotanda, K, Sawai, Y. 2005. Pollen/event stratigraphy of the varved sediment of Lake Suigetsu, central Japan from 15,701 to 10,217 SG vyr BP (Suigetsu varve years before present): description, interpretation, and correlation with other regions. Quaternary Science Reviews 24(14–15):1691–701.CrossRefGoogle Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, ML, Johnsen, SJ, Larsen, LB, Dahl-Jensen, D, Bigler, M, Rothlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research-Atmospheres 111: D06102, doi:10.1029/2005JD006079.CrossRefGoogle Scholar
Rasmussen, SO, Seierstad, IK, Andersen, KK, Bigler, M, Dahl-Jensen, D, Johnsen, SJ. 2008. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quaternary Science Reviews 27(1–2):1828.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Shulski, M, Wendler, G. 2007. Climate of Alaska. Fairbanks: University of Alaska Press.Google Scholar
Starkel, L. 1977. Paleogeografia Holocenu. Warsaw: PWN. In Polish.Google Scholar
Starkel, L, editor. 1999. Geografia Polski. Środowisko przyrodnicze. Warsaw: PWN. In Polish.Google Scholar
Starkel, L, Soja, R, Michczyńska, DJ. 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena 66:2433.CrossRefGoogle Scholar
Yamamoto, M, Suemune, R, Oba, T. 2005. Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophysical Research Letters 32: L05609, doi:10.1029/2004GL021903.CrossRefGoogle Scholar

Appendix: List of Publications Containing 14C Dates Used in pdf Analysis

Abbott, MB, Finney, BP, Edwards, ME, Kelts, KR. 2000. Lake-level reconstruction and paleohydrology of Birch Lake, central Alaska, based on seismic reflection profiles and core transects. Quaternary Research 53(2):154–66.CrossRefGoogle Scholar
Ager, TA. 1999. Holocene vegetation history of the Northern Kenai Mountains, South-Central Alaska. In: Gough, LP, Wilson, FH, editors. Geologic Studies in Alaska by the U.S. Geological Survey. U.S. Geological Survey Professional Paper 1633. p 91107.Google Scholar
Ager, TA, Philips, RL. 2008. Pollen evidence for Late Pleistocene Bering land bridge environments from Norton Sound, northeastern Bering Sea, Alaska. Arctic, Antarctic and Alpine Research 40(3):451–61.CrossRefGoogle Scholar
Anderson, PM, Bartlein, PJ, Brubaker, LB. 1994. Late Quaternary history of tundra vegetation in northwestern Alaska. Quaternary Research 41(3):306–15.CrossRefGoogle Scholar
Anderson, RS, Hallett, DJ, Berg, E, Jass, RB, Toney, JL, de Fontaine, CS, De Volder, A. 2006. Holocene development of Boreal forests and fire regimes on the Kenai Lowlands of Alaska. Holocene 16(6):791803.CrossRefGoogle Scholar
Bigelow, NH, Edwards, ME. 2001. A 14,000 yr paleoenvironmental record from Windmill Lake, Central Alaska: Lateglacial and Holocene vegetation in the Alaska Range. Quaternary Science Reviews 20(1–3):203–15.CrossRefGoogle Scholar
Broecker, WS, Kulp, JL. 1957. Lamont natural radiocarbon measurements IV. Science 126(3287):1324–34.CrossRefGoogle ScholarPubMed
Broecker, WS, Kulp, JL, Tucek, CS. 1956. Lamont natural radiocarbon measurements III. Science 124(3223):154–65CrossRefGoogle ScholarPubMed
Buckley, J, Valdes-Pages, C. 1981. Teledyne Isotopes radiocarbon measurements XII. Radiocarbon 23(3):329–44.CrossRefGoogle Scholar
Buckley, JD, Willis, EH. 1969. Isotopes' radiocarbon measurements VII. Radiocarbon 11(1):53105.CrossRefGoogle Scholar
Buckley, JD, Trautman, MA, Willis, EH. 1968. Isotopes' radiocarbon measurements VI. Radiocarbon 10(2):246–94.CrossRefGoogle Scholar
Heusser, CJ. 1959. Radiocarbon dates of peats from North Pacific North America. American Journal of Science, Radiocarbon Supplement 1:2934.Google Scholar
Carlson, LJ, Finney, BP. 2004. A 13000-year history of vegetation and environmental change at Jan Lake, east-central Alaska. The Holocene 14(6):818–27.Google Scholar
Crane, HR, Griffin, JB. 1968. University of Michigan radiocarbon dates XII. Radiocarbon 10:61114.CrossRefGoogle Scholar
Daigle, TA, Kaufman, DS. 2009. Holocene climate inferred from glacier extent, lake sediment and tree rings at Goat Lake, Kenai Mountains, Alaska, USA. Journal of Quaternary Science 24(1):3345.CrossRefGoogle Scholar
Delibrais, G, Guillier, M-T. 1988. Gif natural radiocarbon measurements XI. Radiocarbon 30(1):61124.CrossRefGoogle Scholar
Delibrais, G, Guillier, M-T, Labeyrie, J. 1986. Gif natural radiocarbon measurements X. Radiocarbon 28(1):968.CrossRefGoogle Scholar
Dorn, TF, Fairhall, AW, Schell, WR, Takashima, Y. 1962. Radiocarbon dating at the University of Washington I. Radiocarbon 4:112.CrossRefGoogle Scholar
Fairhall, AW, Young, JA, Erickson, JL. 1976. University of Washington dates IV. Radiocarbon 18(2):221–39.CrossRefGoogle Scholar
Gfeller, C, Oeschger, H, Schwarz, U. 1961. Bern radiocarbon dates II. Radiocarbon 3:1525.CrossRefGoogle Scholar
Hu, FS, Brubacker, LB, Anderson, PM. 1993. A 12000 year record of vegetation change and soil development from Wien Lake, central Alaska. Canadian Journal of Botany 71(9):1133–42.CrossRefGoogle Scholar
Ives, PC, Levin, B, Oman, CL, Rubin, M. 1964. U.S. Geological Survey radiocarbon dates IX. Radiocarbon 9 505–29.Google Scholar
Ives, PC, Levin, B, Robinson, RD, Rubin, M. 1964. U.S. Geological Survey radiocarbon dates VII. Radiocarbon 6:3776.CrossRefGoogle Scholar
Kaufman, DS, Hu, FS, Briner, JP, Werner, A, Finney, BP, Gregory-Eaves, I. 2003. A ∼33,000 year record of environmental change from Arolik Lake, Ahklun Mountains, Alaska, USA. Journal of Paleolimnology 30(4):343–62.CrossRefGoogle Scholar
Kowalski, SJ. 1965. Pacard Instrument Company radiocarbon dates I. Radiocarbon 7:200–4.CrossRefGoogle Scholar
Kowalski, SJ, Schrodt, AG. 1966. Pacard Instrument Company radiocarbon dates II. Radiocarbon 8:386–9.CrossRefGoogle Scholar
Krueger, HW, Weeks, CF. 1966. Radiocarbon 8:142–60.CrossRefGoogle Scholar
Kulp, JL, Feely, HW, Tryon, LE. 1951. Lamont natural radiocarbon measurements I. Science 114(2970):565–8CrossRefGoogle ScholarPubMed
Kulp, JL, Tryon, LE, Eckelman, WR, Snell, WA. 1952. Lamont natural radiocarbon measurements II. Science 116(3016):409–14.CrossRefGoogle ScholarPubMed
Lawn, B. 1975. University of Pennsylvania radiocarbon dates XVIII. Radiocarbon 17(2):196–215.CrossRefGoogle Scholar
Levin, B, Ives, PC, Oman, CL, Rubin, M. 1965. U.S. Geological Survey radiocarbon dates VIII. Radiocarbon 7:372–98.CrossRefGoogle Scholar
Levy, LB, Kaufman, DS, Werner, A. 2004. Holocene glacier fluctuations, Waskey Lake, northeastern Ahklun Mountains, southwestern Alaska. Holocene 14(2):185–93.CrossRefGoogle Scholar
Libby, WF. 1951. Radiocarbon dates II. Science 114:291–6.CrossRefGoogle ScholarPubMed
Liu, CL, Coleman, DD. 1981. Illinois State Geological Survey radiocarbon dates VII. Radiocarbon 23(3):352–83.CrossRefGoogle Scholar
Long, A. 1965. Smithsonian Institution radiocarbon measurements II. Radiocarbon 7:245–56.CrossRefGoogle Scholar
Lynch, JA, Hollis, JL, Hu, FS. 2004. Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. Journal of Ecology 92:477–89.CrossRefGoogle Scholar
Mann, DH, Heiser, PA, Finney, BP. 2002a. Holocene history of the Great Kobuk Sand Dunes, Northwestern Alaska. Quaternary Science Reviews 21(4–6):709–31.CrossRefGoogle Scholar
Mann, DH, Peteet, DM, Reanier, RE, Kunz, ML. 2002b. Responses of an arctic landscape to Lateglacial and early Holocene climatic changes: the importance of moisture. Quaternary Science Reviews 21(8–9):9971021.CrossRefGoogle Scholar
Marsters, B, Spiker, E, Rubin, M. 1969. U.S. Geologigal Survey radiocarbon dates X. Radiocarbon 11(1):210–27.CrossRefGoogle Scholar
McKay, NP, Kaufman, DD. 2009. Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska. Journal of Paleolimnology 41(1):143–59.CrossRefGoogle Scholar
Mielke, JE, Long, A. 1969. Smithsonian Institution radiocarbon measurements V. Radiocarbon 11(1):163–82.CrossRefGoogle Scholar
Muhs, DR, Ager, TA, Been, J, Bradbury, JP, Dean, WE. 2003a. A late Quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska. Quaternary Research 60(1):110–22.CrossRefGoogle Scholar
Muhs, DR, Ager, TA, Bettis, EA III, McGeehin, J, Been, JM, Beget, JE, Pavich, MJ, Stafford, TW Jr, Stevens De, ASP. 2003b. Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last Interglacial–Glacial cycle in central Alaska. Quaternary Science Reviews 22(18–19):1947–86.CrossRefGoogle Scholar
Olson, EA, Broecker, WS. 1959. Lamont natural radiocarbon measurements V. American Journal of Science, Radiocarbon Supplement 1:128.Google Scholar
Olson, EA, Broecker, WS. 1961. Lamont natural radiocarbon measurements VII. Radiocarbon 3:141–75.CrossRefGoogle Scholar
Oswald, WW, Brubaker, LB, Hu, FS, Kling, GW. 2003. Holocene pollen records from the central Arctic Foothills, northern Alaska: testing the role of substrate in the response of tundra to climate change. Journal of Ecology 91(6):1034–48.CrossRefGoogle Scholar
Pardi, R, Newman, ER. 1980. Queens College radiocarbon measurements III. Radiocarbon 22(4):1073–83.CrossRefGoogle Scholar
Pearson, FJ Jr, Davis, EM, Tamers, MA, Johnstone, RW. 1965. University of Texas radiocarbon dates III. Radiocarbon 7:296314.CrossRefGoogle Scholar
Reeburgh, WS, Young, MS. 1976. University of Alaska radiocarbon dates I. Radiocarbon 18(1):115.CrossRefGoogle Scholar
Robinson, SW. 1977. US Geological Survey, Menlo Park, California, radiocarbon measurements I. Radiocarbon 19(3):460–4.CrossRefGoogle Scholar
Robinson, SW, Trimble, DA. 1981. US Geological Survey, Menlo Park, California, radiocarbon measurements II. Radiocarbon 23(2):305–21.CrossRefGoogle Scholar
Rubin, M, Alexander, C. 1960. American Journal of Science, Radiocarbon Supplement 2:129–85.CrossRefGoogle Scholar
Sheppard, JC, Chatters, RM. 1976. Washington State University natural radiocarbon measurements. Radiocarbon 18(1):140–9.CrossRefGoogle Scholar
Spiker, E, Kelley, L, Oman, C, Rubin, M. 1977. US Geological Survey radiocarbon dates XII. Radiocarbon 19(2):332–53.CrossRefGoogle Scholar
Spiker, E, Kelley, L, Rubin, M. 1978. US Geological Survey radiocarbon dates XIII. Radiocarbon 20(1):139–56.CrossRefGoogle Scholar
Steventon, RL, Kutybach, JE. 1985. University of Wisconsin radiocarbon dates XXII. Radiocarbon 27(2B):455–69.CrossRefGoogle Scholar
Steventon, RL, Kutybach, JE. 1988. University of Wisconsin radiocarbon dates XXV. Radiocarbon 30(3):367–83.CrossRefGoogle Scholar
Stipp, JJ, Davis, EM, Noakes, JE, Hoover, TE. 1962. University of Texas radiocarbon dates I. Radiocarbon 4:4350.CrossRefGoogle Scholar
Stuckenrath, R, Mielke, JE. 1973. Smithsoniana Institution radiocarbon measurements VIII. Radiocarbon 15(2):388–424.CrossRefGoogle Scholar
Stuiver, M. 1969. Yale natural radiocarbon measurements IX. Radiocarbon 11(2):545658.CrossRefGoogle Scholar
Stuiver, M, Deevey, ES. 1961. Yale natural radiocarbon measurements VI. Radiocarbon 3:126–40.CrossRefGoogle Scholar
Stuiver, M, Deevey, ES Jr, Rouse, I. 1963. Yale natural radiocarbon measurements VIII. Radiocarbon 5:312–41.CrossRefGoogle Scholar
Trautman, MA. 1963. Isotopes Inc. radiocarbon measurements III. Radiocarbon 5:6279.CrossRefGoogle Scholar
Trautman, MA. 1964. Isotopes Inc. radiocarbon measurements IV. Radiocarbon 6:269–79.CrossRefGoogle Scholar
Trautman, MA, Walton, A. 1962. Isotopes Inc. radiocarbon measurements II. Radiocarbon 4:3542.CrossRefGoogle Scholar
Trautman, MA, Willis, EH. 1966. Isotopes Inc. radiocarbon measurements V. Radiocarbon 8:161203.CrossRefGoogle Scholar
Trimble, DA, Robinson, SW. 1989. US Geological Survey, Menlo Park, California, radiocarbon measurements IV. Radiocarbon 31(1):6984.CrossRefGoogle Scholar
Walton, A, Trautman, MA, Friend, JP. 1961. Isotopes Inc. radiocarbon measurements I. Radiocarbon 3:4759.CrossRefGoogle Scholar
Wiles, GC, Calkin, PE. 1994. Late Holocene, high-resolution glacial chronologies and climate, Kenai Mountains, Alaska. Geological Society of America Bulletin 106(2):281303.2.3.CO;2>CrossRefGoogle Scholar
Wiles, GC, Jacoby, GC, Davi, NK, McAllister, RP. 2002. Late Holocene glacier fluctuations in the Wrangell Mountains, Alaska. Geological Society of America Bulletin 114(7):896908.2.0.CO;2>CrossRefGoogle Scholar
Wiles, GC, Barclay, DJ, Calkin, PE, Lowell, TV. 2008. Century to millennial-scale temperature variations for the last two thousand years indicated from glacial geologic records of Southern Alaska. Global and Planetary Change 60(1–2):115–25.CrossRefGoogle Scholar