Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:58:44.889Z Has data issue: false hasContentIssue false

Freshwater Reservoir Effect Variability in Northern Germany

Published online by Cambridge University Press:  09 February 2016

Bente Philippsen*
Affiliation:
AMS 14C Dating Centre, Dept. of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
Jan Heinemeier
Affiliation:
AMS 14C Dating Centre, Dept. of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
*
1Corresponding author. Email: bphilipp@phys.au.dk.

Abstract

The freshwater reservoir effect is a potential problem when radiocarbon dating fish bones, shells, human bones, or food crusts on pottery from sites near rivers or lakes. The reservoir age in hardwater rivers can be up to several thousand years and may be highly variable. Accurate 14C dating of freshwater-based samples requires knowing the order of magnitude of the reservoir effect and its degree of variability. Measurements on modern riverine materials may not give a single reservoir age correction that can be applied to archaeological samples, but they show the order of magnitude and variability that can also be expected for the past. This knowledge will be applied to the dating of food crusts on pottery from the Mesolithic sites Kayhude at the Alster River and Schlamersdorf at the Trave River, both in Schleswig-Holstein, northern Germany.

Type
Radiocarbon Reservoir Effects
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birks, HH. 2001. Plant macrofossils. In: Smol, JP, Birks, HJB, Last, WM, editors. Tracking Environmental Change Using Lake Sediments. Dordrecht: Kluwer Academic Publishers. p 4974.Google Scholar
Boudin, M, Strydonck, MV, Crombé, P. 2009. Radiocarbon dating of pottery food crusts: reservoir effect or not? The case of Swifterbant pottery from Doel “Deurganckdok” (Belgium). In: Crombé, P, Strydonck, MV, Sergant, J, Boudin, M, Bats, M, editors. Chronology and Evolution in the Mesolithic of North-West Europe. Newcastle upon Tyne: Cambridge Scholars Publishing. p 753–72.Google Scholar
Broecker, WS, Walton, A. 1959. The geochemistry of C14 in fresh-water systems. Geochimica et Cosmochimica Acta 16:1538.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Brown, TA, Nelson, DE, Vogel, JC, Southon, JR. 1988. Improved collagen extraction by improved Longin method. Radiocarbon 30(2): 171–7.Google Scholar
Cimiotti, U. 1983. Zur Landschaftsentwicklung des mittleren Trave-Tales zwischen Bad Oldesloe und Schwissel, Schleswig-Holstein. Berliner Geographische Studien 13. Berlin: Technische Universität Berlin.Google Scholar
Clausen, I. 2007. Steinzeitliches Alstervergnügen. Archäologie in Deutschland 2:54.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Pettitt, BP. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43(2A):453–60.CrossRefGoogle Scholar
Coplen, TB. 1994. Reporting of stable hydrogen, carbon and oxygen isotopic abundances. Pure and Applied Chemistry 66(2):273–6.Google Scholar
Dacey, JWH. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210(4473): 1017–9.CrossRefGoogle ScholarPubMed
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16(4):436–68.Google Scholar
Deevey, ES, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The natural C14 contents of materials from hardwater lakes. Proceedings of the National Academy of Sciences of the USA 40(5):285–8.Google Scholar
Deutscher Wetterdienst. 2007–2010. Klimadaten für Messstationen in Deutschland. URL: www.dwd.de.Google Scholar
Emrich, K, Ehhalt, DH, Vogel, JC. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters 8:363–71.Google Scholar
Fischer, A, Heinemeier, J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45(3):449–66.Google Scholar
Godwin, H. 1951. Comments on radiocarbon dating samples from the British Isles. American Journal of Science 249:301–7.Google Scholar
Hammarlund, D, Björck, S, Buchardt, B, Israelson, C, Thomsen, CT. 2003. Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quaternary Science Reviews 22(2–4):353–70.Google Scholar
Hartz, S. 1993. Inland-Ertebølle in Schleswig-Holstein. Die Fundstelle Schlamersdorf LA5, Kr. Stormarn. Archäologie in Schleswig 1/1991 [Symposium Wohlde]. p 33–8.Google Scholar
Hartz, S. 1996. Zehnter Arbeitsbericht des Archäologischen Landesamtes Schleswig-Holstein. Grabungsberichte der Jahre 1988–1993: Travenbrück (Altgemeinde Schlamersdorf), Kr. Stormarn, Steinzeitliche Wohnplätze Travenbrück, LA5 und LA 15. Offa 53:374–8.Google Scholar
Hartz, S. 1997. Ertebøllekultur im Travetal. Ausgrabungen auf dem Fundplatz Travenbrück LA 5 (Gemarkung Schlamersdorf), Kreis Stormarn. Ein Vorbericht. In: Denkmalpflege im Kreis Stormarn III. Stormarner Hefte 20:171–86.Google Scholar
Higham, T, Warren, R, Belinskij, A, Härke, H, Wood, R. 2010. Radiocarbon dating, stable isotope analysis, and diet-derived offsets in 14C ages from the Klin-Yar site, Russian North Caucasus. Radiocarbon 52(2–3):653–70.Google Scholar
Hutchinson, GE. 1975. Limnological Botany. New York: John Wiley.Google Scholar
Jørkov, MLS, Heinemeier, J, Lynnerup, N. 2007. Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. Journal of Archaeological Science 34(11): 1824–9.Google Scholar
Katzenberg, MA, Schwarcz, HP, Knyf, M, Melbye, FJ. 1995. Stable isotope evidence for maize horticulture and paleodiet in southern Ontario, Canada. American Antiquity 60(2):335–50.CrossRefGoogle Scholar
Keith, ML, Anderson, GM, Eichler, R. 1964. Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochimica et Cosmochimica Acta 28:1757–86.Google Scholar
Lanting, JN, van der Plicht, J. 1995/1996. Wat hebben Floris V, skelet swifterbant S2 en visotters gemeen? Palaeohistoria 37/38:491519.Google Scholar
Lanting, JN, van der Plicht, J. 1998. Reservoir effects and apparent 14C-ages. The Journal of Irish Archaeology 9:151–65.Google Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.Google Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.Google Scholar
MacDonald, GM, Beukens, RP, Kieser, WE, Vitt, DH. 1987. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada. Geology 15(9):837–40.Google Scholar
Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303(5919):685–7.Google Scholar
Meyers, PA, Teranes, JL. 2001. Sediment organic matter. In: Last, WM, Smol, JP, editors. Tracking Environmental Change Using Lake Sediments. Dordrecht: Kluwer. p 239–69.Google Scholar
Ministerium für Umwelt, Naturschutz und Landwirtschaft des Landes Schleswig-Holstein. 2003. Landschaftsrahmenplan für den Planungsraum II - Kreis Ostholstein und Hansestadt Lübeck. Gesamt-fortschreibung 2003.Google Scholar
Nixdorf, B, Hemm, M, Hoffmann, A, Richter, P. 2003. Dokumentation von Zustand und Entwicklung der wichtigsten Seen Deutschlands. Brandenburg University of Technology Cottbus. Report nr Berichtsnummer: UBA-FB. UFOPLAN-Nr 29924274. 1056 p.Google Scholar
Oana, S, Deevey, ES. 1960. Carbon 13 in lake waters and its possible bearing on paleolimnology. American Journal of Science 258(A):253–72.Google Scholar
Olsen, J, Heinemeier, J. 2009. AMS dating of human bone from the Ostorf cemetery in the light of new information on dietary habits and freshwater reservoir effects. In: Larsson, L, Lüth, F, Terberger, T, editors. Innovation and Continuity. Non-Megalithic Mortuary Practices in the Baltic. Workshop Schwerin 24–25 April 2006.Google Scholar
Olsen, J, Heinemeier, J, Lübke, H, Lüth, F, Terberger, T. 2010. Dietary habits and freshwater reservoir effects in bones from a Neolithic northern German cemetery. Radiocarbon 52(2–3):635–44.Google Scholar
Olsson, IU, Kaup, E. 2001. The varying radiocarbon activity of some recent submerged Estonian plants grown in the early 1990s. Radiocarbon 43(2B):809–20.Google Scholar
Olsson, IU, El, GS, Goeksu, Y. 1969. Uppsala natural radiocarbon measurements IX. Radiocarbon 11(2):515–44.CrossRefGoogle Scholar
Osmond, CB, Valaane, N, Haslam, SM, Uotila, P, Roksandic, Z. 1981. Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants. Oecologia 50(1):117–24.Google Scholar
Philippsen, B. 2010. Terminal mesolithic diet and radiocarbon dating at inland sites in Schleswig-Holstein. In: Landscapes and Human Development: The Contribution of European Archaeology. Proceedings of the International Workshop “Socio-Environmental Dynamics over the Last 12,000 Years: The Creation of Landscapes (1–4 April 2009). Bonn: Dr. Rudolf Habelt GmbH. p 2136.Google Scholar
Philippsen, B. 2012. Variability of freshwater reservoir effects: implications for radiocarbon dating of prehistoric pottery and organisms from estuarine environments [PhD thesis]. Aarhus University.Google Scholar
Philippsen, B, Kjeldsen, H, Hartz, S, Paulsen, H, Clausen, I, Heinemeier, J. 2010. The hardwater effect in AMS 14C dating of food crusts on pottery. Nuclear Instruments and Methods in Physics Research B 268(7–8):995–8.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, WJ, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Romanek, CS, Grossman, EL, Morse, JW. 1992. Carbon isotope fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56:419–30.Google Scholar
Shishlina, NI, van der Plicht, J, Hedges, REM, Zazovskaya, EP, Sevastyanov, VS, Chichagova, OA. 2007. The Catacomb cultures of the North-West Caspian steppe: 14C chronology, reservoir effect, and paleodiet. Radiocarbon 49(2):713–26.CrossRefGoogle Scholar
Smits, L, van der Plicht, H. 2009. Mesolithic and Neolithic human remains in the Netherlands: physical anthropological and stable isotope investigations. Journal of Archaeology in the Low Countries 1(1):5585.Google Scholar
Srdoč, D, Obelic, B, Horvatinčic, N, Sliepčevic, A. 1980. Radiocarbon dating of calcareous tufa: How reliable data can we expect? Radiocarbon 22(3):858–62.Google Scholar
Stewig, R. 1982. Landeskunde von Schleswig-Holstein. Tietze, W, Biays, P, House, J, Yoshino, Masatoshi, editors. Berlin: Gebrüder Borntraeger.Google Scholar
Stuiver, M. 1975. Climate versus changes in 13C content of the organic component of lake sediments during the Late Quaternary. Quaternary Research 5(2):251–62.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, TF. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Törnqvist, TE, de Jong, AFM, Oosterbaan, WA, Van der Borg, K. 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34(3):566–77.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289–93.Google Scholar