Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T17:49:16.177Z Has data issue: false hasContentIssue false

Implications of Dipole Moment Secular Variation from 50,000–10,000 Years for the Radiocarbon Record

Published online by Cambridge University Press:  18 July 2016

R. S. Sternberg
Affiliation:
Department of Geosciences, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003 USA
P. E. Damon
Affiliation:
Department of Geosciences, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sparse paleointensity data from 10–50 ka suggest that the average dipole moment (DM) was 50–75% of the average of 8.67 μ 1022 A m2 for the past 5 Ma, and 8.75 μ 1022 for the past 12 ka. A linear ramp function, increasing the DM from 4 to 8.75 μ 1022 A m2 between 50–10 ka BP, generates a total 14C inventory of 126 dpm/cme 2, agreeing very well with an inventory assay of 128 dpm/cme 2, which includes 14C in sediments. With the Lingenfelter and Ramaty (1970) production function and a model DC gain of about 100, this DM function would give a Δ14C of 500‰ at 20 ka BP, consistent with the Barbados coral record, and also gives a good match to the Holocene record. A Laschamp geomagnetic event at about 45 ka BP, with a DM of 25% of its average value and lasting 5 ka, would only increase the present inventory by 0.3–1.2 dpm/cme 2, and would probably have only a small effect on Δ14C at 20 ka BP, but could produce a short-lived 14C spike of over 500‰.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Barbetti, M. 1980 Geomagnetic strength over the last 50,000 years and changes in atmospheric 14C concentration: Emerging trends. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 192199.Google Scholar
Barbetti, M. and Flude, K. 1979 Geomagnetic variation during the late Pleistocene period and changes in the radiocarbon time scale. Nature 279: 202205.Google Scholar
Bard, E., Hamelin, B., Arnold, M. and Buigues, D. 1991 230Th/234U and 14C ages obtained by mass spectrometry on corals from Mururoa Atoll, French Polynesia. Abstract. Radiocarbon 33(2): 173.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990a Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405410.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G., Zindler, A., Mathieu, G. and Arnold, M. 1990b U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years b.p. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 461468.Google Scholar
Beer, J., Siegenthaler, U., Bonani, G., Finkel, R. C., Oeschger, H., Suter, M. and Wölfli, W. 1988 Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331: 675679.Google Scholar
Blinov, A. 1988 The dependence of cosmogenic isotope production rate on solar activity and geomagnetic field variations. In Stephenson, F. R. and Wolfendale, A. W., eds., Secular Solar and Geomagnetic Variations in the Last 10,000 Years . Dordrecht, The Netherlands, Kluwer Publishing Co.: 329340.Google Scholar
Bonhommet, N. and Babkine, J. 1967 Sur la présence d'aimantations inversées dans la Chaîne de Puys. Comptes Rendus de l'Academie des Sciences B264: 9294.Google Scholar
Castagnoli, G. and Lal, D. 1980 Solar modulation effects in terrestrial production of carbon-14. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22 (2): 133158.Google Scholar
Champion, D. E. 1980 Holocene geomagnetic secular variation in the western United States: Implications for the global geomagnetic field. US Geological Survey Open-File Report 80-824. Denver, Colorado: 314 p.CrossRefGoogle Scholar
Coe, R. S., Grommé, S. and Mankinen, E. A. 1978 Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. Journal of Geophysical Research 83: 17401756.Google Scholar
Damon, P. E. 1970 Climatic versus magnetic perturbation of the atmospheric C14 reservoir. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology . Proceedings of the 12th Nobel Symposium. Stockholm, Almqvist & Wiksell: 571593.Google Scholar
Damon, P. E. 1988 Production and decay of radiocarbon and its modulation by geomagnetic field-solar activity changes with possible implications for global environment. In Stephenson, F. R. and Wolfendale, A. W., eds., Secular Solar and Geomagnetic Variations in the Last 10,000 Years . Dordrecht, The Netherlands, Kluwer Publishing Co.: 267283.Google Scholar
Damon, P. E., Cheng, S. and Linick, T. W. 1989 Fine and hyperfine structure in the spectrum of secular variations of atmospheric 14C. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 704718.Google Scholar
Damon, P. E., Lerman, J. C. and Long, A. 1978 Temporal fluctuations of atmospheric 14C: Causal factors and implications. Annual Reviews of Earth and Planetary Sciences 6: 457494.Google Scholar
Damon, P. E. and Sonett, C. P. 1991 Solar and terrestrial components of the atmospheric 14C variation spectrum. In Sonett, C. P., Giampapa, M. S. and Mathews, M. S., eds., The Sun in Time . Tucson, The University of Arizona Press: 360388.Google Scholar
Damon, P. E. and Sternberg, R. S. 1989 Global production and decay of radiocarbon. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 697703.Google Scholar
Damon, P. E., Sternberg, R. S. and Radnell, C. J. 1983 Modeling of atmospheric radiocarbon fluctuations for the past three centuries. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 249258.Google Scholar
Elsasser, W., Ney, E. P. and Winckler, J. R. 1956 Cosmic-ray intensity and geomagnetism. Nature 178: 12261227.Google Scholar
Grey, D. C. 1971 14C data and the Laschamp reversed event. Journal of Geomagnetism and Geoelectricity 23(1): 123127.Google Scholar
Heller, F. and Petersen, N. 1982 The Laschamp excursion. Philosophical Transactions of the Royal Society of London A306(1492): 169177.Google Scholar
Houtermans, J. 1966 On the quantitative relationships between geophysical parameters and the natural C14 inventory. Zeitschrift für Physik 193: 112.Google Scholar
Karlén, I., Olsson, I. U., Kållberg, P. and Kilicci, S. 1964 Absolute determination of the activity of two C14 dating standards. Arkiv för Geofysik 4(22): 465471.Google Scholar
Lal, D. 1988 Theoretically expected variations in the terrestrial cosmic-ray production rates of isotopes. In Castagnoli, G. C., ed., Solar-Terrestrial Relationships and the Earth Environment in the Last Millennia . Amsterdam, Elsevier: 216233.Google Scholar
Lazear, G., Damon, P. E. and Sternberg, R. 1980 The concept of DC gain in modeling secular variations in atmospheric 14C. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 318327.Google Scholar
Levi, S., Audunnson, H., Duncan, R. A., Kristjánnson, L., Gillot, P.-Y. and Jakobsson, S. P. 1990 Late Pleistocene geomagnetic excursion in Icelandic lavas: Confirmation of the Laschamp excursion. Earth and Planetary Science Letters 96: 443457.Google Scholar
Libby, W. F. 1967 Radiocarbon and paleomagnetism. In Hindmarsh, W. R., Lowes, F. J., Roberts, P. H. and Runcorn, S. K., eds., Magnetism and the Cosmos . New York, American Elsevier: 6065.Google Scholar
Lingenfelter, R. E. and Ramaty, R. 1970 Astrophysical and geophysical variations in C14 production. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology . Proceedings of the 12th Nobel Symposium. Stockholm, Almqvist & Wiksell: 513535.Google Scholar
Marshall, M., Chauvin, A. and Bonhommet, N. 1988 Preliminary paleointensity measurements and detailed magnetic analyses of basalts from the Skalamaelifell excursion, southwest Iceland. Journal of Geophysical Research 93(B10): 11,68111,698.CrossRefGoogle Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. 1991a Geomagnetic field control of 14C production over the last 80 Ky: Implications for the radiocarbon time-scale. Abstract. EOS, Transactions, American Geophysical Union 72(44): 7172.Google Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. 1991b Geomagnetic field control of 14C production over the last 80 Ky: Implications for the radiocarbon time-scale. Geophysical Research Letters 18(10): 18851888.Google Scholar
McElhinny, M. W. and Senanayake, W. E. 1982 Variations in the geomagnetic dipole 1: The past 50,000 years. Journal of Geomagnetism and Geoelectricity 34: 3951.Google Scholar
McFadden, P. L. and McElhinny, M. W. 1982 Variations in the geomagnetic dipole, 2. Statistical analysis of VDMs for the past 5 million years. Journal of Geomagnetism and Geoelectricity 34: 163189.Google Scholar
O'Brien, K. J. 1979 Secular variation in the production of cosmogenic isotopes. Journal of Geophysical Research 84(A2): 423431.Google Scholar
Olsson, I. U., ed. 1970 Radiocarbon Variations and Absolute Chronology . Proceedings of the 12th Nobel Symposium. Stockholm, Almqvist & Wiksell: 652 p.Google Scholar
Phillips, F. W., Sharma, P. and Wigand, P. E. 1991 Deciphering variations in cosmic radiation using cosmogenic 36Cl in ancient rat urine. Abstract. EOS, Transactions, American Geophysical Union 72(44): 72.Google Scholar
Raisbeck, G. M., Yiou, F., Bourles, D., Lorius, C., Jouzel, J. and Barkov, N. I. 1987 Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature 326: 273277.Google Scholar
Ramaty, R. 1967 The influence of geomagnetic shielding on C14 production and content. In Hindmarsh, W. R., Lowes, F. J., Roberts, P. H. and Runcorn, S. K., eds., Magnetism and the Cosmos . New York, American Elsevier: 6678.Google Scholar
Richmond, B., Peterson, S. and Vescuso, P. 1987 An Academic User's Guide to STELLA . Lyme, New Hampshire, High Performance Systems: 392 p.Google Scholar
Roperch, P., Bonhommet, N. and Levi, S. 1988 Paleointensity of the earth's magnetic field during the Laschamp excursion and its geomagnetic implications. Earth and Planetary Science Letters 88: 209219.Google Scholar
Salis, J.-S., Bonhommet, N. and Levi, S. 1989 Paleointensity of the geomagnetic field from dated lavas of the Chaîne des Puys, France. 1. 7–12 thousand years before present. Journal of Geophysical Research 94(B11): 15,77115,784.Google Scholar
Schweitzer, C. and Soffel, H. C. 1980 Paleointensity measurements on postglacial lavas from Iceland. Journal of Geophysics 47: 5760.Google Scholar
Sternberg, R. S. 1992 Radiocarbon fluctuations and the geomagnetic field. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective . New York, Springer-Verlag: 93116.Google Scholar
Sternberg, R. S. and Damon, P. E. 1979 Sensitivity of radiocarbon fluctuations and inventory to geomagnetic and reservoir parameters. In Berger, R. and Suess, H. E., eds., Radiocarbon Dating . Proceedings of the 9th International 14C Conference. Berkeley, University of California Press: 691717.Google Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Kromer, B. 1991 Climatic, solar, oceanic, and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35: 124.Google Scholar
Stuiver, M. and Kra, R. S., eds. 1986 Calibration Issue. Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 8051030.Google Scholar
Tanaka, H. 1990 Paleointensity high at 9000 years from volcanic rocks in Japan. Journal of Geophysical Research 95(B11): 17,51717,531.Google Scholar
Tauxe, L. and Valet, J.-P. 1989 Relative paleointensity of the earth's magnetic field from marine sedimentary rocks: A global perspective. Physics of the Earth and Planetary Interiors 13: 241244.Google Scholar
Thouveny, N. and Creer, K. M. 1991 Laschamp: An ephemeral geomagnetic anomaly. Paper presented at XX General Assembly of IUGG, Vienna, August 11–24.Google Scholar
Thouveny, N., Creer, K. M. and Blunk, I. 1990 Extension of the Lac du Bouchet paleomagnetic record over the last 120,000 years. Earth and Planetary Science Letters 97: 140161.Google Scholar
Tric, E., Valet, J.-P., Tucholka, P., Paterne, M., Labeyrie, L., Guichard, F., Tauxe, L. and Fontugne, M., in press, Paleointensity of the geomagnetic field during the last eighty thousand years. Journal of Geophysical Research. Google Scholar
Wada, M. and Inoue, A. 1966 Relation between the carbon 14 production rate and the geomagnetic moment. Journal of Geomagnetism and Geoelectricity 18(4): 485488.Google Scholar