Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T19:45:17.990Z Has data issue: false hasContentIssue false

Isotopic Evidence for Environmental Adaptation in Medieval Iin Hamina, Northern Finland

Published online by Cambridge University Press:  06 June 2017

Maria Lahtinen*
Affiliation:
Finnish Museum of Natural History (LUOMUS), Laboratory of Chronology, University of Helsinki, 00014 Helsingin Yliopisto, Finland

Abstract

This study investigates human environmental adaptation in northern Finland at the cemetery of Iin Hamina. The cemetery was in use in the 15th and 16th centuries AD during the cool climate anomaly called the Little Ice Age. It is possible that these extreme climatic conditions may have impacted human survival in this agriculturally marginal region. In previous studies, carbon and nitrogen isotopes in the bone collagen of humans and fauna have shown that the main protein source for people at Iin Hamina was fish. In this study, I observe annual changes in diet derived from isotopic studies of teeth. Apart from one individual whose protein source shifted radically during tooth formation, the results show the inhabitants of Iin Hamina experienced only minor changes in diet over periods of several years. Moreover, none of the dietary profiles provided evidence of dietary or physiological stress through raised nitrogen isotope ratios. The results indicate that the individuals in this study appear to have been well-adapted to their environment.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Qahtani, SJ, Hector, MP, Liversidge, HM. 2010. Brief communication: the London atlas of human tooth development and eruption. Americal Journal of Physical Anthropology 142:481490.Google Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431451.CrossRefGoogle Scholar
Ambrose, SH, Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G, editors. Prehistoric Human Bone. Berlin: Springer-Verlag. p 137.Google Scholar
Balasse, M, Bocherens, H, Mariotti, A, Ambrose, SH. 2001. Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: an experimental study of dentine collagen of cattle (Bos taurus). Journal of Archaeological Science 28:235245.Google Scholar
Beaumont, J, Gledhil, A, Lee-Thorp, J, Montgomery, J. 2013a. Childhood diet: a closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine. Archaeometry 55:277295.CrossRefGoogle Scholar
Beaumont, J, Geber, J, Powers, N, Wilson, A, Lee-Thorp, J, Montgomery, J. 2013b. Victims and survivors: stable isotopes used to identify migrants from the Great Irish Famine to 19th century London. American Journal of Physical Anthropology 150:8798.Google Scholar
Beaumont, J, Gledhill, A, Montgomery, J. 2014. Isotope analysis of incremental human dentine: towards higher temporal resolution. Bulletin of the International Association for Paleodontogy 8(2):212223.Google Scholar
Beaumont, J, Montgomery, J, Buckberry, J, Jay, M. 2015. Infant mortality and isotopic complexity: new approaches to stress, maternal health, and weaning. American Journal of Physical Antropology 157(3):441457.Google Scholar
Beaumont, J, Montgomery, J. 2016. The Great Irish Famine: identifying starvation in the tissues of victims using stable isotope analysis of bone and incremental dentine collagen. PLoS ONE 11(8):e0160065.Google Scholar
Bilsborough, S, Mann, N. 2006. A review of issues of dietary protein intake in humans. International Journal of Sport Nutrition and Excercise Metabolism 16:129152.Google Scholar
Burt, NM, Garvie-Lok, S. 2013. A new method of dentine microsampling of deciduous teeth for stable isotope ratio analysis. Journal of Archaeological Science 40(11):38543864.Google Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12:134149.Google Scholar
Craig, OE, Bondioli, L, Fattore, L, Higham, T, Hedges, R. 2013. Evaluating marine diets through radiocarbon dating and stable isotope analysis of victims of the AD79 eruption of Vesuvius. American Journal of Physical Anthropology 152:345352.CrossRefGoogle ScholarPubMed
Cramp, LJE, Evershed, RP, Lavento, M, Halinen, P, Mannermaa, K, Kettunen, J, Perola, M, Onkamo, P, Heyd, V, Oinonen, M. 2014. Neolithic dairy farming at the extreme of agriculture in northern Europe Neolithic dairy farming at the extreme of agriculture in northern Europe. Proceedings of Royal Society, Biological Science B 22:1–9.Google Scholar
DeNiro, M. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806809.CrossRefGoogle Scholar
Deschner, T, Fuller, BT, Oeize, VM, Boesch, C, Hublin, J-J, Mundry, R, Richards, MP, Ortman, S, Hohmann, G. 2011. Identification of energy consumption and nutritional stress by isotopic and elemental analysis of urine in bonobos (Pan paniscus). Rapid Communication in Mass Specrometry 26(1):6977.Google Scholar
Draper, H. 1977. The Aboriginal Eskimo diet in modern perspective. American Journal of Anthropoly 79:309316.Google Scholar
Drucker, D, Bocherens, H, Pike-Tay, A, Mariotti, A. 2001. Isotopic tracking of seasonal dietary change in dentine collagen: preliminary data from modern caribou. Comptes Rendus l’Académie des Sci . Serie IIA – Earth and Planetary Science 333:303309.Google Scholar
Eerkens, JW, Berget, AG, Bartelink, EJ. 2011. Estimating weaning and early childhood diet from serial micro-samples of dentine collagen. Journal of Archaeological Science 38:31013111.Google Scholar
Eriksson, G, Lidén, K. 2013. Dietary life histories in Stone Age Northern Europe. Journal of Anthropological Archaeology 32(3):288302.Google Scholar
Fernandes, R, Nadeau, M, Grootes, PM. 2012. Macronutrient-based-model for dietary carbon ruting in bone collagen and bioapatite. Archaeological and Anthropological Sciences 4(4):291301.Google Scholar
Fuller, B, Fuller, J. 2006. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. American Journal of Archaeology 129:279293.Google Scholar
Fuller, BT, Richards, MP, Mays, SA. 2003. Stable carbon and nitrogen isotope variations in tooth dentine serial sections from Wharram Percy. Journal of Archaeological Science 30:16731684.Google Scholar
Hayward, AD, Holopainen, J, Pettay, JE, Lummaa, V. 2012. Food and fitness: associations between crop yields and life-history traits in a longitudinally monitored pre-industrial human population. Proceedings of Royal Society, Biological Science 279:4165–73.Google Scholar
Hedges, R, Clement, J, Thomas, DL, O’Connell, TC. 2007. Collagen turnover in the adult femoral mid‐shaft: modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology 133(2):808816.Google Scholar
Hillson, S. 2005. Teeth, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Hobson, KA, Alisauskas, RT, Clark, RG. 1993. Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implication for Isotopic analysis of diet. The Condon 95:388394.CrossRefGoogle Scholar
Howcroft, R, Eriksson, G, Lidén, K. 2012. Conformity in diversity? Isotopic investigation of infant feeding practises in two Iron Age populations from southern Öland, Sweden. American Journal of Physical Anthropology 149:217230.Google Scholar
Jim, S, Ambrose, SH, Evershed, RP. 2004. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochimica et Cosmochimica Acta 68:6172.Google Scholar
Kallio-Seppä, T. 2010. Iin Hamina, Yläkadun kunnostustyöt [unpublished report]. Finnish National Board of Antiquity.Google Scholar
Kallio-Seppä, T. 2011. Tietoa Iin kirkosta ja kirkkomaista kirjallisten ja arkeologisten lähteiden perusteella. In: Kallio-Seppä T, Ikäheimo J, Paavola K, editors. Iin Haminan Kirkko Ja Hautausmaa - Arkeologisia Tutkimuksia. p 3443.Google Scholar
Kallio-Seppä, T, Junni, JA, Niinimäki, S, Korpi, HK, Tanskanen, T, Heikkilä, T, Kamula, K. 2009. Excavation at Ii Hamina discontinued cemetery - preliminary results and implication. Fennoscandia Archaeology XXVI:172176.Google Scholar
Kallio-Seppä, T, Heikkilä, T, Junno, JA, Kamula, K, Korpi, H-K, Lipkin, S, Miettinen, E, Niinimäki, S, Atkinson, S, Tanska, T, Tranberg, A, Vilkama, R. 2010. Iin Haminan hautausmaan naisvainaja CH36. Jyväskylä, Findland: Suomen Museo. p 5183.Google Scholar
Kempster, B, Zanette, L, Longdtaffe, FJ, MacDougall-Shackeleton, SA, Wingfield, JC, Clinchy, M. 2007. Do stable isotopes reflect nutrional stress? Results from a laboratory experiment on song sparrows. Oecologia 151:365371.Google Scholar
Knight, GM, McIntyre, JM, Craig, GG. 2007. Electron probe microanalysis of ion exchange of selected elements between dentine and adhesive restorative materials. Australian Dental Journal 52(2):128132.Google Scholar
Korpi, HK, Kallio-Seppä, T. 2011. Vainajien hautaustavoista. In: Kallio-Seppä T, Ikäheimo J, Paavola K, editors. Iin Haminan Kirkko Ja Hautausmaa - Arkeologisia Tutkimuksia. p 5469.Google Scholar
Korteniemi, I. 1992. Peurahautojen ajoitus ja sijainti Tornionlaaksossa ja Pohjois–Pohjanmaalla [MA thesis]. Department of Geography, University of Oulu.Google Scholar
Kuusela, JM, Tiilikkala, J, Vaske, RV, Okkonen, J. 2011. Keskus–periferiamalli Pohjois–Suomen rautakauden asutusdynamiikan tarkastelun apuna. Faravid 35:177204.Google Scholar
Lahtinen, M, Rowley-Conwy, P. 2013. Early farming in Finland: was there cultivation before the Iron Age (500 BC)? European Journal of Archaeology 16:660684.CrossRefGoogle Scholar
Lahtinen, M, Salmi, A-K. 2017. Mixed livelihood society in iin hamina – a case study of medieval diet in the northern Ostrobothnia, Finland. Manuscript submitted.Google Scholar
Linde, A, Goldberg, M. 1993. Dentinogenesis. Critical Reviews in Oral Biology and Medicine 4(5):679728.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.CrossRefGoogle ScholarPubMed
Lovell, NC, Nelson, D, Schwarcz, HP. 1986. Carbon isotope ratios in paleodiet: lack of age or sex effect. Archaeometry 28(1):5155.Google Scholar
Luoto, TP, Nevalainen, L, Sarmaja-Korjonen, K. 2008. Multiproxy evidence for the “Little Ice Age” from Lake Hampträsk, Southern Finland. Journal of Paleolimnology 40(4):10971113.CrossRefGoogle Scholar
Luukko, A. 1954. Pohjois-Pohjanmaan ja Lapin historia. 2. Pohjois-Pohjanmaan ja Lapin keskiaika sekä 1500-luku. Oulu: Pohjois-Pohjanmaan maakuntaliiton ja Lapinmaakuntaliiton yhteinen historiatoimikunta.Google Scholar
Mäkivuoti, M. 1992. Rautakauden asutus Pohjanrannalla. In: Suomen Varhaishistoria. Tornion Kongressi 14.-16.6.1991. Studia Historica Septentrionalia 21:343–55.Google Scholar
McCue, MD, Pollock, ED. 2008. Stable isotopes may provide evidence for starvation in reptiles. Rapid Communication in Mass Spectrometry 22:23072314.Google Scholar
Mekota, A, Grupe, G, Ufer, S, Cuntz, U. 2006. Serial analysis of stable nitrogen and carbon isotopes in hair: monitoring starvation and recovery phases of patients suffering from anorexia nervosa. Rapid Communication in Mass Spectrometry 20:16041610.CrossRefGoogle ScholarPubMed
Montgomery, J, Beaumont, J, Jay, M, Keefe, K, Gledhill, AR, Cook, GT, Dockrill, SJ, Melton, ND. 2013. Strategic and sporadic marine consumption at the onset of the Neolithic: increasing temporal resolution in the isotope evidence. Antiquity 87:10601072.Google Scholar
National Institute for Health and Welfare. Fineli Database. Available from: http://www.fineli.fi.Google Scholar
Noli, D, Averyb, G. 1988. Protein poisoning and coastal subsistence. Journal of Archaeological Research 15:395401.Google Scholar
Reynoud, C, Hjelmroos, M. 1980. Pollen evidene and radiocarbon dating of human activity within the natural forest vegetation of the Pohjanmaa region. Candonella 35:257304.Google Scholar
Robertson, KL, Rowland, NE, Krigbaum, J. 2014. Effects of caloric restriction on nitrogen and carbon stable isotope rations in adult rat bone. Rapid Communication in Mass Spectrometry 28(19):20652074.CrossRefGoogle Scholar
Salmi, AK. 2011. Kotieläinten luita. In: Iin Haminan Kirkko Ja Hautausmaa - Arkeologisia Tutkimuksia. Iin Kunta. p 88–9.Google Scholar
Sandberg, PA, Sponheimer, M, Lee-Thorp, J, Van Gerven, J. 2014. Intra-tooth stable isotope analysis of dentine: a step towards addressing selective mortality in the reconstruction of life hirstory in the archaeological record. American Journal of Physical Anthropology 155:281293.Google Scholar
Speth, JD. 1987. Early hominid subsistence strategies in seasonal habitats. Journal of Archaeological Science 14:1329.Google Scholar
Sponheimer, M, Robinson, T. 2006. Turnover of stable carbon isotopes in the muscle, liver, and breath CO2 of alpacas (Lama pacos). Rapid Communication in Mass Spectrometry 20:13951399.Google Scholar
Tranberg, A. 2011. Eläin- ja kasvinäytteitä. In: Kallio-Seppä T, Ikäheimo J, Paavola K, editors. Iin Haminan Kirkko Ja Hautausmaa - Arkeologisia Tutkimuksia. p 73–6.Google Scholar
Tricker, ND, Dixon, RB, Gretto, LP. 2002. Cortical bone turnover and mineral apposition in dentate bone mandible. In: Garetto LP, Turner CH, Duncan RL, Burr DB, editors. Bridging the gap between dental and orthopaedic implants. Indiana University School of Dentistry. p 226–7.Google Scholar
Vahtola, J. 1992. Pohjois-Pohjanmaan rannikon asutuksen synty. In: Suomen Varhaishistoria. Tornion Kongressi 14.-16.6.1991. Studia Historica Septentrionalia 21. p 613–21.Google Scholar
Van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26:687695.Google Scholar
Vilkama, R. 2011. Iin Vanhan Haminan Vainajien Hammassairaudet Pohjoisen Ruokavalion kuvastajina n. 1400–1600 AD. In: Ikäheimo J, Nurmi R, Satokangas R, editors. Harmaata Näkyvissä. Kirsti Paavolan Juhlakirja. Vaasa, Finland: Waasa Graphics. p 251264.Google Scholar
Williams, CT, Buck, LC, Sears, J, Kitaysky, AS. 2007. Effects of nutrional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153:1118.Google Scholar
Wood, JW, Milner, RG, Harpending, HC, Weiss, KM, Cohen, MN, Eisenberg, LE, Hutchinson, DL, Jankauskas, R, Cesnys, G, Ĉesnys, G, Katzenberg, MA, Lukacs, JR, McGrath, JW, Roth, EA, Ubelaker, DH, Wilkkinson, RG. 1992. The osteological paradox: problems of inferring prehistoric health from skeletal samples. Current Anthropology 33(4):343370.Google Scholar
Wright, LE. 1999. Correspondance between stable carbon, oxygen, and nitrogen isotopes in human tooth enemal and dentine: infant diets at Kaminaljuyú. Journal of Arhcaeological Science 26:11591170.Google Scholar
Supplementary material: File

Lahtinen supplementary material

Lahtinen supplementary material

Download Lahtinen supplementary material(File)
File 361.1 KB