Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T21:31:29.490Z Has data issue: false hasContentIssue false

Marine Radiocarbon Reservoir Effect in Late Pleistocene and Early Holocene Coastal Waters off Northern Iberia

Published online by Cambridge University Press:  30 August 2016

António M Monge Soares*
Affiliation:
Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
Igor Gutiérrez-Zugasti
Affiliation:
Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Ed. Interfacultativo, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
Manuel González-Morales
Affiliation:
Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Ed. Interfacultativo, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
José M Matos Martins
Affiliation:
Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
David Cuenca-Solana
Affiliation:
Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Ed. Interfacultativo, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
Geoffrey N Bailey
Affiliation:
Department of Archaeology, University of York, King’s Manor YO1 7EP, York, UK
*
*Corresponding author. Email: amsoares@ctn.tecnico.ulisboa.pt.

Abstract

Radiocarbon dating of closely associated marine mollusk shells and terrestrial material (mammal bones or charred wood) collected from archaeological contexts in northern Atlantic Iberian coastal areas is used to quantify the marine 14C reservoir effect (ΔR) for the coastal waters off the Cantabrian coast of northern Iberia. For the first time, ΔR values were reliably determined for these coastal waters and, also for the first time, a ΔR was calculated for the Late Pleistocene in Atlantic Iberia. Pairs of coeval samples of different carbon reservoirs selected from Upper Paleolithic (Late Pleistocene) and Mesolithic (Early Holocene) contexts yielded ΔR weighted mean values of –117±70 14C yr and –105±21 14C yr, respectively. These values show oceanographic conditions characterized by a reduced offset between atmospheric and surface water 14C contents, suggesting a nonexistent or very weak upwelling and some stratification of the water column. Similar oceanographic conditions have been recorded in other areas of Atlantic Iberia during the Holocene, such as off Andalusian and northwestern Galician coasts. Results not only provide useful information on environmental conditions but also a framework to obtain more precise and reliable absolute chronologies for the Late Pleistocene and Early Holocene in northern Iberia.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, L, Gomez-Gesteira, M, deCastro, M, Lorenzo, MN, Crespo, AJC, Dias, JM. 2011. Comparative analysis of upwelling influence between the western and northern coast of the Iberian Peninsula. Continental Shelf Research 31(5):388399.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532547.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ, Scott, EM. 2007. The North Atlantic Marine reservoir effect in the Early Holocene: implications for defining and understanding MRE values. Nuclear Instruments and Methods in Physics Research B 259(1):438447.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ. 2009. North Atlantic marine 14C reservoir effects: implications for late-Holocene chronological studies. Quaternary Geochronology 4(3):171180.Google Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3(6):635645.Google Scholar
Bard, E, Arnold, M, Mangerud, M, Paterne, M, Labeyrie, L, Duprat, J, Mélières, MA, Sonstegaard, E, Duplessy, JC. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126(4):275287.Google Scholar
Bohígas, R, Muñoz Fernández, E. 2002. Excavaciones arqueológicas de urgencia en el Covacho de Arenillas (Islares, Castro-Urdiales). 1992. In: Ontañón R, editor. Actuaciones Arqueológicas en Cantabria 1987–1999. Santander: Arqueología de Gestión, Gobierno de Cantabria. p 4547.Google Scholar
Bond, G, Showers, W, Cheseby, M, Lotti, R, Almasi, P, deMenocal, P, Priore, P, Cullen, H, Hadjas, I, Bonani, G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):12571266.Google Scholar
Bond, G, Kromer, B, Beer, J, Muscheler, R, Evans, MN, Showers, W, Hoffmann, S, Lotti-Bond, R, Hajdas, I, Bonani, G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294(5549):21302136.Google Scholar
Botas, JA, Fernandez, E, Bode, A, Anadon, R. 1990. A persistent upwelling off the central Cantabrian Coast (Bay of Biscay). Estuarine, Coastal and Shelf Science 30(2):185199.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Castro, CG, Pérez, FF, Álvarez-Salgado, XA, Fraga, F. 2000. Coupling between the thermohaline chemical and biological fields during two contrasting upwelling events off the NW Iberian Peninsula. Continental Shelf Research 20(2):189210.Google Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B 268(7–8):867870.CrossRefGoogle Scholar
Ferreira, DB. 1984. Le Systeme Climatique de l’Upwelling Ouest Iberique, [Report #19 of the Linha de Acção de Geografia Física]. Lisbon: Centro de Estudos Geográficos. INIC. 92 p.Google Scholar
Fiúza, AFG. 1982. The Portuguese coastal upwelling system. In: Actual Problems of Oceanography in Portugal. Lisbon: Junta Nacional de Investigação Científica e Tecnológica. p 4571.Google Scholar
Fiúza, AFG. 1983. Upwelling patterns off Portugal. In: Suess E, Thiede J, editors. Coastal Upwelling. Its Sediment Record . New York: Plenum. p 8598.CrossRefGoogle Scholar
Fiúza, AFG, Macedo, ME, Guerreiro, MR. 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta 5(1):3140.Google Scholar
García-Escárzaga, A, Gutiérrez-Zugasti, I, González-Morales, MR. 2015a. Análisis arqueomalacológico de la unidad estratigráfica 108 del conchero mesolítico de El Mazo (Llanes, Asturias): conclusiones socio-económicas y metodológicas. In: Gutiérrez-Zugasti I, Cuenca-Solana D, González-Morales MR, editors. La Investigación Arqueomalacológica en la Península Ibérica: Nuevas Aportaciones. Santander: Nadir Ediciones. p 7789.Google Scholar
García-Escárzaga, A, Moncayo, S, Gutiérrez-Zugasti, I, González-Morales, MR, Martín-Chivelet, J, Cáceres, JO. 2015b. Mg/Ca ratios measured by Laser Induced Breakdown Spectroscopy (LIBS): a new approach to decipher environmental conditions. Journal of Analytical Atomic Spectrometry 30:19131919.Google Scholar
Gil, J. 2003. Changes in the pattern of water masses resulting from a poleward slope current in the Cantabrian Sea (Bay of Biscay). Estuarine, Coastal and Shelf Science 57(5–6):11391149.Google Scholar
Gil, J, Valdés, L, Moral, M, Sánchez, R, Garcia-Soto, C. 2002. Mesoscale variability in a high-resolution grid in the Cantabrian Sea (southern Bay of Biscay), May 1995. Deep-Sea Research I 49(9):15911607.Google Scholar
González Morales, MR, Márquez Uria, MC. 1978. The Asturian shell midden of Cueva de Mazaculos II (La Franca, Asturias, Spain). Current Anthropology 19(3):614615.Google Scholar
González Morales, MR, Márquez Uría, MC, Díez González, TE, Ortea, JA, Volman, KC. 1980. El conchero asturiense de la Cueva de Mazaculos II (La Franca, Asturias): Campañas de 1976 a 1978. Noticiario Arqueológico Hispánico 9. Madrid: Ministerio de Cultura.Google Scholar
González Morales, MR, Moure Romanillo, A. 2008. Excavaciones y estudio de arte rupestre en la cueva de la Fuente del Salín (Muñorrodero, Val de San Vicente). Campaña de 2000. In: Ontañón R, editor. Actuaciones Arqueológicas en Cantabria 2000–2003. Santander: Gobierno de Cantabria, Consejería de Cultura, Turismo y Deporte. p 7982.Google Scholar
Gutiérrez-Zugasti, I. 2009. La explotación de moluscos y otros recursos litorales en la región cantábrica durante el Pleistoceno final y el Holoceno inicial. Santander: PUbliCan, Ediciones de la Universidad de Cantabria.Google Scholar
Gutiérrez-Zugasti, I. 2011. Coastal resource intensification across the Pleistocene-Holocene transition in Northern Spain: evidence from shell size and age distributions of marine gastropods. Quaternary International 244(1):5466.Google Scholar
Gutiérrez-Zugasti, I, González-Morales, MR. 2014. Intervención arqueológica en la Cueva de El Mazo (Andrín, Llanes): Campañas de 2009, 2010 y 2012. In: Excavaciones Arqueológicas en Asturias 2007–2012. Oviedo: Consejeria de Cultura y Deporte del Gobierno de Principado de Asturias. p 159167.Google Scholar
Gutiérrez-Zugasti, I, Cuenca Solana, D, González Morales, MR, García Moreno, A. 2013. Exploitation of molluscs as food during the Gravettian at Fuente del Salín cave (Cantabria, Northern Spain). In: Daire MY, Dupont C, Baudry A, Billard C, Large JM, Lespez L, Normand E, Scarre C, editors. Ancient Maritime Communities and the Relationship between People and Environment along the European Atlantic Coasts. BAR International Series 2570. Oxford: Archaeopress. p 491500.Google Scholar
Gutiérrez-Zugasti, I, González-Morales, MR, Cuenca-Solana, D, Fuertes, N, García-Moreno, A, Ortiz, JE, Rissetto, J, Torres, T. 2014. La ocupación de la costa durante el Mesolítico en el Oriente de Asturias: primeros resultados de las excavaciones en la cueva de El Mazo (Andrín, Llanes). Archaeofauna 23:2538.Google Scholar
Gutiérrez-Zugasti, I, García-Escárzaga, A, Martín-Chivelet, J, González-Morales, MR. 2015. Determination of sea surface temperatures using oxygen isotope ratios from Phorcus lineatus (Da Costa, 1778) in northern Spain: implications for palaeoclimate and archaeological studies. The Holocene 25(6):10021014.Google Scholar
Ingram, BL. 1998. Differences in radiocarbon age between shell and charcoal from a Holocene shellmound in northern California. Quaternary Research 49(1):102110.Google Scholar
Kennett, DJ, Ingram, BL, Erlandson, JM, Walker, P. 1997. Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, southern California. Journal of Archaeological Science 24(11):10511059.Google Scholar
Lasheras Corruchaga, JA, Montes Barquín, R, Munoz Fernandez, E, Rasines Del Río, P, De Las Heras Martin, C, Fatas Monforte, P. 2005–2006. El proyecto cientifico Los Tiempos de Altamira: primeros resultados. Munibe 57:143159.Google Scholar
Lavín, A, Valdés, L, Gil, J, Moral, M. 1998. Seasonal and inter-annual variability in properties of surface water off Santander, Bay of Biscay, 1991–1995. Oceanologica Acta 21(2):179190.Google Scholar
Llope, M, Anadón, R, Viesca, L, Quevedo, M, González-Quirós, R, Stenseth, NC. 2006. Hydrography of the southern Bay of Biscay shelf-break region: integrating the multiscale physical variability over the period 1993–2003. Journal of Geophysical Research 111:C09021.Google Scholar
Lorenzo, LM, Arbones, B, Tilstone, GH, Figueras, FG. 2005. Across-shelf variability of phytoplankton composition, photosynthetic parameters and primary production in the NW Iberian upwelling system. Journal of Marine Systems 54(1–4):157173.Google Scholar
Martins, JMM, Soares, AMM. 2013. Marine radiocarbon reservoir effect in southern Atlantic Iberian coast. Radiocarbon 55(2–3):11231134.Google Scholar
NGRIP Members, Andersen, KK, Azuma, N, Barnola, J-M, Bigler, M, Biscaye, P, Caillon, N, Chappellaz, J, Clausen, HB, Dahl-Jensen, D, Fischer, H, Flückiger, J, Fritzsche, D, Fujii, Y, Goto-Azuma, K, Grønvold, K, Gundestrup, NS, Hansson, M, Huber, C, Hvidberg, CS, Johnsen, SJ, Jonsell, U, Jouzel, J, Kipfstuhl, S, Landais, A, Leuenberger, M, Lorrain, R, Masson-Delmotte, V, Miller, H, Motoyama, H, Narita, H, Popp, T, Rasmussen, SO, Raynaud, D, Rothlisberger, R, Ruth, U, Samyn, D, Schwander, J, Shoji, H, Siggard-Andersen, M-L, Steffensen, JP, Stocker, T, Sveinbjörnsdóttir, AE, Svensson, A, Takata, M, Tison, J-L, Thorsteinsson, T, Watanabe, O, Wilhelms, F, White, JWC. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147151.Google Scholar
Nogueira, E, González-Nuevo, G, Morán, XAG, Varela, M, Bode, A. 2003. Hydrological structures along the N and NW Iberian Shelf during the winter-spring transition. Thalassas 19(2B):6567.Google Scholar
Prego, R, Bao, R. 1997. Upwelling influence on the Galician coast: silicate in shelf water and underlying surface sediments. Continental Shelf Research 17(3):307318.Google Scholar
Prego, R, Barciela, MC, Varela, M. 1999. Nutrient dynamics in the Galician coastal area (Northwestern Iberian Peninsula): Do the Rias Bajas receive more nutrient salts than the Rias Altas? Continental Shelf Research 19(3):317334.Google Scholar
Rasmussen, SO, Vinther, BM, Clausen, HB, Andersen, KK. 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26(15–16):19071914.Google Scholar
Reimer, PJ, McCormac, G, Moore, J, McCormick, F, Murray, EV. 2002. Marine radiocarbon reservoir corrections for the mid- to late Holocene in the eastern subpolar North Atlantic. The Holocene 12(2):129135.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, A.G, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Russell, N, Cook, GT, Ascough, PL, Scott, EM, Dugmore, AJ. 2011. Examining the inherent variability in ΔR: new methods of presenting ΔR values and implications for MRE studies. Radiocarbon 53(2):277288.Google Scholar
Sigman, DM, Boyle, EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806):859869.Google Scholar
Soares, AMM, Dias, JMA. 2006. Coastal upwelling and radiocarbon—evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.Google Scholar
Soares, AMM, Dias, JMA. 2007. Reservoir effect of coastal waters off western and northwestern Galicia. Radiocarbon 49(2):925936.Google Scholar
Stern, JV, Lisiecki, LE. 2013. North Atlantic circulation and reservoir age changes over the past 41,000 years. Geophysical Research Letters 40(14):36933697.Google Scholar
Straus, LG, Clark, GA. 1986. La Riera Cave. Stone Age Hunter-Gatherer Adaptations in Northern Spain. Tempe: Arizona State University.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C database and revised CALIB 3.0 14C age calibration. Radiocarbon 35(1):215230.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Stuiver, M, Reimer, PJ, Reimer, R. 2016. Marine Reservoir Correction Database. http://calib.qub.ac.uk/marine/.Google Scholar
Teller, JT, Leverington, DW, Mann, JD. 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21(8–9):879887.Google Scholar
Torres, R, Barton, ED, Miller, P, Fanjul, E. 2003. Spatial patterns of wind and sea surface temperature in the Galician upwelling region. Journal of Geophysical Research 108(C4):3130.Google Scholar
Varela, RA, Rosón, G, Herrera, JL, Torres-López, S, Fernández-Romero, A. 2005. A general view of the hydrographic and dynamical patterns of the Rías Baixas adjacent sea area. Journal of Marine Systems 54(1–4):97113.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293.Google Scholar
von Grafenstein, U, Erlenkeuser, H, Müller, J, Jouzel, J, Johnsen, S. 1998. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14(2):7381.Google Scholar
Wooster, WS, Bakun, A, McClain, DR. 1976. The seasonal upwelling cycle along the eastern boundary of the North Atlantic. Journal of Marine Research 34(2):131141.Google Scholar