Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T15:31:17.490Z Has data issue: false hasContentIssue false

Measurements of Cosmogenic 14C Produced by Spallation in High-Altitude Rocks

Published online by Cambridge University Press:  18 July 2016

A. J. T. Jull
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
Amy E. Wilson
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
George S. Burr
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
Laurence J. Toolin
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
Douglas J. Donahue
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The production of radioisotopes at the Earth's surface by cosmic-ray effects has been discussed for many years. Only in the past few years, with the higher sensitivity provided by accelerator mass spectrometry (AMS) in detecting 10Be, 26A1 and 36Cl, have the radioisotopes produced in this way been measured. We report here our measurements of cosmogenic 14C in terrestrial rocks at high altitude, and comparisons to other exposure-dating methods.

Type
III. Global 14C Production and Variation
Copyright
Copyright © The American Journal of Science 

References

Boudouard, O. 1902 Recherches sur les équilibres chimiques. Annales de Chimie et de Physique 24(7): 585.Google Scholar
Brown, R. M., Andrews, H. R., Ball, G. C., Burn, N., Imahori, Y., Milton, J. C. D. and Fireman, E. L. 1984 14C content of ten meteorites measured by Tandem Accelerator Mass Spectrometry. Earth and Planetary Science Letters 67: 18.CrossRefGoogle Scholar
Cerling, T. E. 1990 Dating geomorphic surfaces using cosmogenic 3He. Quaternary Research 33: 148156.CrossRefGoogle Scholar
Craig, H. and Poreda, R. 1986 Cosmogenic 3He in terrestrial rocks: The summit lavas of Maui. Proceedings of the National Academy of Science USA 83: 19701974.CrossRefGoogle ScholarPubMed
Donahue, D. J. 1991 Measurements of radiocarbon ages at the University of Arizona accelerator mass spectrometry facility. Proceedings of the Beijing Conference on Accelerator Mass Spectrometry, Beijing, China, 1990.Google Scholar
Donahue, D. J., Jull, A. J. T. and Toolin, L. J. 1990 Radiocarbon measurements at the University of Arizona AMS Facility. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 224228.CrossRefGoogle Scholar
Dorn, R. I., Phillips, F. M., Zreda, M. G., Wolfe, E. W., Jull, A. J. T., Donahue, D. J., Kubik, P. W. and Sharma, P. 1991 Glacial chronology of Mauna Kea, Hawaii, as constrained by surface-exposure dating. National Geographic Research 7(4): 456471.Google Scholar
Englert, P. A. J., Jull, A. J. T., Donahue, D. J., Reedy, R. C. and Lal, D. 1989 Cosmogenic nuclide production rates: Carbon-14 from neutron spallation. Lunar and Planetary Science XX. Houston, Texas, The Lunar & Planetary Institute: 490491.Google Scholar
Jull, A. J. T., Donahue, D. J., Linick, T. W. and Wilson, G. C. 1989 Spallogenic 14C in high-altitude rocks and in Antarctic meteorites. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 719724.CrossRefGoogle Scholar
Jull, A. J. T., Donahue, D. J. and Reedy, R. C. 1991 Carbon-14 depth profiles in Apollo 15 cores. Lunar and Planetary Science XXII. Houston, Texas, The Lunar and Planetary Institute: 665666.Google Scholar
Jull, A. J. T., Donahue, D. J., Zabel, T. H. and Fireman, E. L. 1984 Carbon-14 ages of Antarctic meteorites with accelerator and small-volume counter techniques. Journal of Geophysical Research 89: C329335.CrossRefGoogle Scholar
Klein, J., Gigengack, R., Middleton, R., Sharma, P., Underwood, J. R. and Weeks, R. A. 1986 Revealing histories of exposure using in-situ produced 26Al and 10Be in Libyan desert glass. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 547555.CrossRefGoogle Scholar
Kurz, M. D. 1986 In-situ production of terrestrial helium and some applications to geochronology. Geochimica et Cosmochimica Acta 50: 28552862.CrossRefGoogle Scholar
Kurz, M. D., Colodner, D., Trull, T. W., Moore, R. B. and O'Brien, K. 1990 Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows. Earth and Planetary Science Letters 97: 177189.CrossRefGoogle Scholar
Lal, D. and Arnold, J. R. 1985 Tracing quartz through the environment. Proceedings of the Indian Academy of Science A94: 15.Google Scholar
Lal, D., Arnold, J. R. and Honda, M. 1960 Cosmic-ray production rates of 7Be in oxygen, and 32P, 33P and 35S in argon at mountain altitudes. Physical Review 118: 16261632.CrossRefGoogle Scholar
Lal, D., Jull, A. J. T., Donahue, D. J., Burtner, D. and Nishiizumi, K. 1990 Polar ice ablation rates measured using in-situ cosmogenic 14C. Nature 346: 350352.CrossRefGoogle Scholar
Lal, D. and Peters, B. 1967 Cosmic ray produced radioactivity on the earth. In Flugge, S., ed., Handbuch der Physik. Berlin, Springer-Verlag 46/2: 551662.Google Scholar
Leavy, B. D. (ms.) 1987 Surface-exposure dating of young volcanic rocks using the in-situ buildup of cosmogenic isotopes. , New Mexico Institute of Mining and Mineral Technology, Socorro, New Mexico.Google Scholar
Linick, T. W., Jull, A. J. T., Toolin, L. J. and Donahue, D. J. 1986 Operation of the NSF-Arizona Accelerator Facility for Radioisotope Analysis and results from selected collaborative research projects. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 522533.CrossRefGoogle Scholar
Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D. and Middleton, R. 1991 In-situ 10Be-26Al exposure ages at Meteor Crater, Arizona. Geochimica et Cosmochimica Acta 55: 26992703.CrossRefGoogle Scholar
Nishiizumi, K., Kohl, C. P., Klein, J., Middleton, R., Winterer, E. L., Lal, D. and Arnold, J. R. 1989 Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research 94: 17,90717,915.CrossRefGoogle Scholar
Nishiizumi, K., Lal, D., Klein, J., Middleton, R. and Arnold, J. R. 1986 Production of 10Be and 26Al by cosmic rays in terrestrial quartz in-situ and implications for erosion rates. Nature 319: 134136.CrossRefGoogle Scholar
Phillips, F. M., Leavy, B. D., Jannik, N. O., Elmore, D. and Kubik, P. W. 1986 The accumulation of cosmogenic 36Cl in rocks: A method for surface exposure dating. Science 231: 4143.CrossRefGoogle Scholar
Phillips, F. M., Zreda, M. G., Smith, S. R., Elmore, D., Kubik, P. W., Dorn, R. I. and Roddy, D. J. 1991 Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochimica et Cosmochimica Acta 55: 26952698.CrossRefGoogle Scholar
Poths, J. and Goff, F. 1990 Using cosmogenic noble gases to estimate erosion rates. Abstract, Fall Meeting, American Geophysical Union. EOS 71: 1346.Google Scholar
Shea, M. A., Smart, D. F. and Gentile, L. C. 1987 Estimating cosmic ray vertical cutoff rigidities as a function of the McIlwain L-parameter for different epochs of the geomagnetic field. Physics of the Earth and Planetary Interiors 48: 200205.CrossRefGoogle Scholar
Sisterson, J. M., Jull, A. J. T., Donahue, D. J., Koehler, A. M., Reedy, R. C. and Englert, P. A. J. 1991 Cross sections for production of carbon-14 from oxygen and silicon: Implications for cosmogenic production rates. Abstract, 54th Meteoritical Society Meeting, Monterey, California.Google Scholar
Slota, P. J., Jull, A. J. T., Linick, T. W. and Toolin, L. J. 1987 Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2): 303306.CrossRefGoogle Scholar
Staudacher, T. and Allegre, C. J. 1990 Cosmogenic 21Ne: a new tracer in geochemistry. Abstract, Fall Meeting, American Geophysical Union. EOS 71: 1668.Google Scholar
Yokoyama, Y., Reyss, J.-L. and Guichard, F. 1977 Production of radionuclides by cosmic rays at mountain altitudes. Earth and Planetary Science Letters 36: 4450.CrossRefGoogle Scholar