Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T03:55:30.180Z Has data issue: false hasContentIssue false

OH Radicals via Atmospheric 14CO

Published online by Cambridge University Press:  18 July 2016

Andreas Volz
Affiliation:
Institut für Atmosphärische Chemie, Kernforschungsanlage Jülich, GmbH, D-5170 Jülich 1, West Germany
Alfred Tönnissen
Affiliation:
Institut für Atmosphärische Chemie, Kernforschungsanlage Jülich, GmbH, D-5170 Jülich 1, West Germany
D H Ehhalt
Affiliation:
Institut für Atmosphärische Chemie, Kernforschungsanlage Jülich, GmbH, D-5170 Jülich 1, West Germany
Ahmed Khedim
Affiliation:
Institut für Atmosphärische Chemie, Kernforschungsanlage Jülich, GmbH, D-5170 Jülich 1, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Measurements of 14CO in the lower troposphere show a well-defined seasonal variation between 11 ± 1 molecules cm–3 in summer and 25 ± 2 molecules cm–3 in winterat 51°N. The concentration at 27°N in summer is found to be 4.2 ± 0.7 molecules cm–3. From these data and published 12CO measurements, the average concentration of OH radicals in the troposphere is calculated to be 6.5 ± 2.5 × 105 molecules cm–3 using a 2-D time-dependent model. The corresponding 12CO lifetime is two months; the 14CO lifetime is five months.

Type
Man-Made 14C Variations
Copyright
Copyright © The American Journal of Science 

References

Derwent, R G and Curtis, A R, 1977, Two-dimensional model studies of some trace gases and free radicals in the troposphere: AERE Harwell, rept AERE-R 8853.Google Scholar
Levin, Ingeborg, 1978, Regionale Modellierung des atmosphärischen CO2 aufgrund von C-13- und C-14-Messungen: Diplomarbeit, Univ Heidelberg.Google Scholar
Liebl, K H and Seiler, W, 1976, CO and H2 destruction at the soil surface, in Microbial production and utilization of gases: Akad Wissenschaften Göttingen, Goltz Druck, Göttingen.Google Scholar
Lingenfelter, R E, 1963, Production of carbon-14 by cosmic-ray neutrons: Rev Geophys, v 1, p 3555.Google Scholar
McKay, C, Pandow, U and Wolfgang, R, 1963, On the chemistry of natural radiocarbon: Jour Geophys Research, v 68, p 39293931.Google Scholar
Seiler, W, 1974, The cycle of atmospheric CO: Tellus, v 26, p 116135.CrossRefGoogle Scholar
Seiler, W and Schmidt, U, 1974, New aspects on CO and H2 cycles in the atmosphere, in Internatl conf structure, composition and general circulation of the upper and lower atmosphere and possible anthropogenic perturbations: Melbourne, v 1 p 192222.Google Scholar
Seiler, W and Zankl, H, 1976, Man's impact on the atmospheric CO-cycle, in Environmental biogeochemistry: Ann Arbor, Mich, Ann Arbor Science, v 1, p 2537.Google Scholar
Volz, Andreas, Ehhalt, D H, Derwent, R G, and Khedim, Ahmed, 1979, Messung von atmosphärischen 14CO: eine Methode zur Bestimmung der troposphärischen OH Radikalkonzentration: Jül-1604, ISSN 0366-0885.Google Scholar
Weinstock, B, 1969, Carbon monoxide: residence time in the atmosphere: Science v 166, p 224225.Google Scholar
Weinstock, B and Niki, H, 1972, Carbon monoxide balance in nature: Science v 176 p 290292.Google Scholar
Zimmerman, P R, Chatfield, R B, Fishman, J, Crutzen, P J, and Hanst, P L, 1978, Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation: Geophys Research Letters, v 5, p 679682.CrossRefGoogle Scholar