Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T18:38:34.688Z Has data issue: false hasContentIssue false

THE OLDEST RULERS OF EARLY MEDIEVAL BOHEMIA AND RADIOCARBON DATA

Published online by Cambridge University Press:  27 July 2020

Jan Frolik
Affiliation:
Institute of Archaeology of the CAS, Letenská 4, Prague11801, Czech Republic
Jiri Sneberger*
Affiliation:
CRL DRD, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague18086, Czech Republic Department of the History of the Middle Ages of Museum of West Bohemia, Kopeckého sady 2, Pilsen30100, Czech Republic Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, Prague2 12843, Czech Republic
Ivo Svetlik
Affiliation:
CRL DRD, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague18086, Czech Republic
Sylva Drtikolová Kaupová
Affiliation:
Department of Anthropology, National Museum, Václavské náměstí 68, Prague1 11579, Czech Republic
Katerina Pachnerova Brabcova
Affiliation:
CRL DRD, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague18086, Czech Republic
Zuzana A Ovsonkova
Affiliation:
CRL DRD, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague18086, Czech Republic
*
*Corresponding author. Email: sneberger@ujf.cas.cz.

Abstract

Given the nature of medieval artifacts and resulting research requirements, a precise temporal classification is essential. It is especially important for the purposes of medieval archaeology in interpreting archaeological finds/finding situations and identifying them with a historical events or figures, for example, to identify skeletal remains of a known historical figure or to establish a chronological sequence of various cultural and architectural changes within an area. Due to the fact that the uncertainties of radiocarbon (14C) analyses have been decreasing in recent years, the applicability of 14C dating for such purposes is now growing. In this work, we aim to demonstrate the current possibilities of the use of AMS 14C analyses on specific cases and confront the results with other available data. 14C data from skeletal remains of members of the oldest Czech ruling dynasty of the Přemyslids (about 880–1306 AD) were obtained in recent years. Archaeological research conducted in the three oldest churches in the Prague Castle discovered skeletal remains of three members of the second, two members of the fourth and two members of the fifth generation. This case study of the application of 14C data has three parts: i) identification of excavated individuals; ii) demonstration of the application using current AMS-based analysis of 14C on medieval osteological material and tests of our preparation method; iii) contributing to discussion and consulting with other problematical 14C age alteration influenced by diet, age of bone collagen or seasonal variation of 14C activity. The obtained results and the issues arising from them clearly highlight the necessity of a multidisciplinary cooperation in this type of study.

Type
Conference Paper
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 9th Radiocarbon & Archaeology Symposium, Athens, GA, USA, 20–24 May 2019

References

REFERENCES

Bárta, P, Štolc, S. Jr. 2007. HBCO Correction: Its impact on archaeological absolute dating. Radiocarbon 49(2):465472.CrossRefGoogle Scholar
Bláhová, M, Frolík, J, Profantová, N. 1999. Velké dějiny zemí Koruny české. Sv. I., do roku 1197. Praha: Paseka.Google Scholar
Bocherens, H. 1992. Biogéochimie isotopique (13C, 15N, 18O) et paléontologie des vertébrés: applications à l’étude des réseaux trophiques révolus et des paléoenvironnements. Unpublished dissertation. Université Paris IV.Google Scholar
Borkovský, I. 1975. Svatojiřská bazilika a klášter na Pražském hradě—Praha: Academia. Kirche und Kloster St. Georg auf der Prager Burg. Praha: Academia.Google Scholar
Bravermanová, M, Dobisíková, M, Frolík, J, Kaupová, S, Stránská, P, Svetlik, I, Vaněk, D, Velemínský, P, Votrubová, J. 2018. Nové poznatky o ostatcích z hrobů K1 a K2 z rotundy sv. Víta na Pražském hradě, Archeologické rozhledy 70:260293.Google Scholar
Bravermanová, M, Dobisíková, M, Frolík, J, Kaupová, S, Stránská, P, Svetlik, I, Vaněk, D, Velemínský, P. in press. Hrob 98 v bazilice sv. Jiří na Pražském hradě. Boleslav II. nebo někdo jiný?. In: Mašek M, editor. Thiddag, třetí pražský biskup, Praha: Nakladatelství Lidové noviny.Google Scholar
Bretholz, B. 1923. Die Chronik der Böhmen des Cosmas von Prag. Berlin: Weidmannsche Buchhandlung.Google Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: Progress and limitations. Radiocarbon 46(1):1724.CrossRefGoogle Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.CrossRefGoogle Scholar
Curie, LA. 1995. Nomenclature in evaluation of analytical methods including detection and quantification capabilities. IUPAC Recommendation 1995. Pure & Applied Chemistry 67(10): 16991723.CrossRefGoogle Scholar
Dietze, MC, Sala, A, Carbone, MS, Czimczik, CI, Mantooth, JA, Richardson, AD, Vargas, R. 2014. Nonstructural carbon in woody plants. Annual Review of Plant Biology 65(1):667687.CrossRefGoogle ScholarPubMed
Frolík, J. 2005. Hroby přemyslovských knížat na Pražském hradě—Die Gräber der Přemyslidenfürsten auf der Prager Burg. In: Tomková K, editor. Pohřbívání na Pražském hradě a jeho předpolích, Díl I.1 Castrum Pragense 7. Praha: Archeologický ústav AV ČR, Praha. p. 25–46.Google Scholar
Frolík, J. 2015. Pohřebiště u kostela Panny Marie a na II. nádvoří Pražského hradu. Díl I. Katalog—The burial grounds at the Church of the Virgin Mary and at the second courtyard of Prague Castle. Part I., Catalogue. Castrum Pragense 14. Projekt ABG 1. Praha: Archeologický ústav AV ČR, Praha.Google Scholar
Gessler, A, Treydte, K. 2016. The fate and age of carbon—insights into the storage and remobilization dynamics in trees. New Phytologist 209:1338–40.CrossRefGoogle ScholarPubMed
Geyh, MA. 2001. Bomb radiocarbon dating of animal tissues and hair. Radiocarbon 43(2B):723730.CrossRefGoogle Scholar
Handlos, P, Svetlik, I, Horáčková, L, Fejgl, M, Kotik, L, Brychova, V, Megisova, N, Marecova, K. 2018. Bomb peak: Radiocarbon dating of skeletal remains in routine forensic medical practice. Radiocarbon 60(4):10171028.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18881903.CrossRefGoogle Scholar
Keel, SG, Siegwolf, RT, Kötner, C. 2006. Canopy CO2 enrichments permits tracing the fate of recently assimilated carbon in mature deciduous forest. New Phytologist 172(2):319329.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in troposphere: magnitude, mechanisms, and consequences. Science 264(5551):25292532.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:267268.CrossRefGoogle ScholarPubMed
McDonald, L, Chivall, D, Miles, D, Bronk Ramsey, C. 2018. Seasonal variation in the 14C content of tree rings: influences on radiocarbon calibration and single-year curve construction. Radiocarbon 61(1):185194.CrossRefGoogle Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3):665676.CrossRefGoogle Scholar
Molnár, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, H-A. 2013b. EnvironMICADAS: A mini 14C-AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55(2–3):338344.CrossRefGoogle Scholar
Orsovszki, G, Rinyu, L. 2015. Flame-sealed tube graphitization using zinc as the sole reduction agent: precision improvement of EnvironMICADAS 14C measurements on graphite targets. Radiocarbon 57(5):979990.CrossRefGoogle Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1(24).CrossRefGoogle Scholar
Polanský, L. 2009. Přemyslovská dynastie. Soupis členů původního českého panovnického rodu. In: Sommer P, Třeštík D, Žemlička J, editors, Přemyslovci. Budování českého státu, Praha: Nakladatelství Lidové noviny. p. 549–553.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Ramsey, CB, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10291058.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 11111150.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.CrossRefGoogle Scholar
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnár, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using Environ MICADAS. Nuclear Instruments and Methods in Physics Research B 361:406413.CrossRefGoogle Scholar
Smetánka, Z, Vlček, E, Eisler, J. 1983. Hrobka knížete Spytihněva I. (K chronologii Pražského hradu na přelomu 9. a 10. století—Gruft des Fürsten Spytihněv der Ersten (Zur Chronologie der Prager Burg um die Wende des 9. und 10. Jahrhunderts, Folia Historica Bohemica 5:6180.Google Scholar
Stuiver, M, Polach, HA. 1977. Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Synal, H-A, Schulze-Konig, T, Seiler, M, Suter, M, Wacker, L. 2013. Mass spectrometric detection of radiocarbon for datin applications. Nuclear Instruments and Methods in Physics Research B 294:349352.CrossRefGoogle Scholar
Třeštík, D. 1997. Počátky Přemyslovců. Vstup Čechů do dějin (530–935). Praha: Nakladatelství Lidové noviny.Google Scholar
Vlček, E. 1997. Nejstarší Přemyslovci. Atlas kosterních pozůstatků prvních sedmi historicky známých generací Přemyslovců s podrobným komentářem a historickými poznámkami. Fyzické osobnosti českých panovníků I. Praha: Vesmír.Google Scholar