Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T17:58:12.036Z Has data issue: false hasContentIssue false

Paleoenvironmental Records Influenced by Sea Level Variations During the Holocene in the Vitória Bay Region, Espírito Santo State, Brazil

Published online by Cambridge University Press:  19 June 2017

Alex da Silva de Freitas*
Affiliation:
Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geologia, 24210-346, Niterói, Rio de Janeiro, RJ, Brazil
Cintia Ferreira Barreto
Affiliation:
Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geologia, 24210-346, Niterói, Rio de Janeiro, RJ, Brazil
Alex Cardoso Bastos
Affiliation:
Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ecologia e Recursos Naturais, 29090-600, Espírito Santo, ES, Brazil
José Antônio Baptista Neto
Affiliation:
Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geologia, 24210-346, Niterói, Rio de Janeiro, RJ, Brazil
*
*Corresponding author. Email: alexsilfre@gmail.com.

Abstract

Vitória Bay is located in the south-central part of the State of Espírito Santo (SES). Multiproxy analyses were performed on samples from a 490-cm-long sediment core collected at the coordinates 40°18′23′′W and 20°14′48′′S. The objective of this study was to identify and integrate the multiproxy data to determine the environmental dynamics during the Holocene. The material was subsampled every 10 m and submitted to standard methodological processing. The sediment core was dated to two depths: the oldest age was between 9396 and 9520 cal yr BP at a 480-cm depth, and the youngest age was from 7423 to 7511 cal yr BP at a 304-cm depth. The integrated analysis revealed evidence of three major environmental changes in Vitória Bay. The first phase had a fluvial influence (depth of 490–480 cm; 9396–9520 cal yr BP). This was followed by a transitional period (depth of 480–290 cm; 7423–7511 cal yr BP) with a salt influence due to the Last Marine Transgression (LMT). Later, the environmental stability was similar to that of today (290 cm to the core top). This was a reflection of the Last Marine Regression (LMR) in the Holocene.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramoff, MD, Magalhães, PJ, Ram, SJ. 2004. Image processing with ImageJ. Biophotonics International 11(7):3642.Google Scholar
Angulo, RJ, Lessa, GG, Souza, MC. 2006. A critical review of Mid- to Late Holocene sea-level flutuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486506.Google Scholar
Barbie, EB, Koch, EW, Siliman, BR, Hacker, SD, Wolanski, E, Primavera, J, Granek, EF, Polasky, S, Aswani, S, Cramer, LA, Stoms, DM, Kennedy, CJ, Bael, D, Kappel, CV, Perillo, GME, Reed, DJ. 2008. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319:321323.Google Scholar
Barreto, CF, Vilela, CG, Baptista Neto, JA, Barth, OM. 2012. Spatial distribution of pollen grains and spores in surface sediments of Guanabara Bay, Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciências 84:627643.Google Scholar
Barreto, CF, Freitas, AS, Vilela, CG, Baptista Neto, JA, Barth, OM. 2013. Grãos de pólen em sedimentos superficiais da Baía de Guanabara, Rio de Janeiro, Brasil. Anuário do Instituto de Geociências 36:3254.Google Scholar
Barreto, CF, Baptista Neto, JA, Vilela, CG, Barth, OM. 2015. Palynological studies of Late Holocene Jurujuba Sound sediments (Guanabara Bay), Rio de Janeiro, southeast Brazil. Catena 126:2027.Google Scholar
Barreto, CF, Freitas, AS, Souza, TCS, Vilel, CG, Barth, OM, Baptista Neto, JA. 2016. A mid-Holocene vegetational and anthropogenic record in the Guanabara Bay region, Rio de Janeiro State, SE Brazil, assessed by palynological and charcoal data. Grana 56(4):304314.Google Scholar
Bartholomeu, RL, Barros, MA, Lopes, MRS, Barth, OM, Vilela, CG. 2014. Evolução paleogeográfica da planície costeira da Praia Vermelha, entrada da Baía de Guanabara, Rio de Janeiro, por meio de registros palinológicos. Anuário do Instituto de Geociências 37:92103.Google Scholar
Bastos, AC, Moscon, DMC, Carmo, D, Baptista Neto, JA, Quaresma, VS. 2015. Modern sedimentation processes in a wave-dominated coastal embayment: Espírito Santo Bay, southeast Brazil. Geo-Marine Letters 35:2336.CrossRefGoogle Scholar
Belem, CIF. 1985. Palinologia de sedimentos inconsolidados do Mangue de Guaratiba, Estado do Rio de Janeiro, Brasil. Brasília: MME-DNPM, Série Geologia 27, Seção Paleontologia e Estratigrafia 2: 273284.Google Scholar
Brush, GS, Brush, LM. 1994. Transport and deposition of pollen in an estuary: signature of the landscape. In: Traverse A, editor. Sedimentation of Organic Matter. Cambridge: Cambridge Press.Google Scholar
Buso Júnior, AA, Pessenda, LCR, De Oliveira, PE, Giannini, PCF, Cohen, MCL, Volkmer-Ribeiro, C, Oliveira, SMB, Favaro, DIT, Rossetti, DF, Lorente, FL. 2013. From an estuary to a freshwater lake: a paleo-estuary evolution in the context of Holocene sea-level fluctuations, SE Brazil. Radiocarbon 55(3):17351746.Google Scholar
Castro, BM, Miranda, LB. 1996. Physical oceanography of the western Atlantic continental shelf located between 4° N and 34° S. The Sea 11(8):209251.Google Scholar
Castro, JWA, Suguio, K, Seoane, JCS, Cunha, AM, Dias, FF. 2014. Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. Anais da Academia Brasileira de Ciências 86(2):671683.Google Scholar
Church, JA, Woodworth, PL, Aarup, T, Wildon, WS. 2010. Understanding Sea-Level Rise and Variability. Wiley-Blackwell. 428 p.Google Scholar
Coelho, LG, Barth, OM, Chaves, HA. 1999. O registro palinológico das mudanças da vegetação na região da Baía de Sepetiba, Rio de Janeiro, nos últimos 1000 anos. Leandra 14:5163.Google Scholar
Colinvaux, P, De Oliveira, PE, Patiño, JEM. 1999. Amazon Pollen Manual and Atlas. Harwood Academic Publishers. 332 p.Google Scholar
Costa, RB. 1999. A Baía de Vitória e suas ilhas. Revista do Instituto Histórico e Geográfico do Espírito Santo 51:1730.Google Scholar
Ellison, JC. 2015. Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology Management 23:115137.Google Scholar
Figueiredo, AG Jr, Toledo, MB, Cordeiro, RC, Godoy, JMO, Silva, FT, Vasconcelos, SC, Santos, RA. 2014. Linked variations in sediment accumulation rates and sea-level in Guanabara Bay, Brazil, over the last 6000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 415:8390.Google Scholar
Flantua, SGA, Hooghiemstra, H, Vuille, M, Behling, H, Carson, JF, Gosling, WD, Hoyos, I, Ledru, MP, Montoya, E, Mayle, F, Maldonado, A, Rull, V, Tonello, MS, Whitney, BS, González-Arango, C. 2016. Climate variability and human impact on the environment in South America during the last 2000 years: synthesis and perspectives. Climate Past Discussion 11:34753565.Google Scholar
Folk, R, Ward, W. 1957. Brazos River bar. A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27(1):326.Google Scholar
França, MC, Alves, ICC, Castro, DF, Cohen, MCL, Rosseti, DF, Pessenda, LCR, Lorente, FL, Fontes, NA, Buso, AA Jr, Giannini, PCF, Franciquini, MI. 2015. A multi-proxy evidence for the transition from estuarine mangroves to deltaic freshwater marshes, southeastern Brazil, due to climatic and sea-level changes during the Late Holocene. Catena 128:155166.Google Scholar
Gyllencreutz, R, Mahiques, MM, Alves, DVP, Wainer, IKC. 2010. Mid- to late-Holocene paleoceanographic changes on the southeastern Brazilian shelf based on grain size record. The Holocene 20(6):863875.Google Scholar
Hatté, C, Gauthier, C, Rousseau, DD, Antoine, P, Fuchs, M, Lagroix, F, Markovic, SB, Moine, O, Sima, A. 2013. Excursions to C4 vegetation recorded in the Upper Pleistocene loess of Surduk (northern Serbia): an organic isotope geochemistry study. Climate of the Past 9:10011014.Google Scholar
Hofmann, C. 2002. Pollen distribution in subrecent sedimentary environments of the Orinoco Delta (Venezuela) – an actuopaleobotanical study. Review of Palaeobotany and Palynology 119:191217.CrossRefGoogle Scholar
Lacerda, LD, Molisani, MM, Sena, D, Maia, LP. 2008. Estimating the importance of natural and anthropogenic sources on N and P emission to estuaries along the Ceará State coast NE Brazil. Environmental Monitoring and Assessment 141:149164.Google Scholar
Lorente, FL, Pessenda, LCR, Obooh-Ikuenobe, F, Buso Júnior, AA, Cohen, MCL, Meyer, KEB, Giannini, PCF, Oliveira, PE, Rosseti, DF, Borotti Filho, MA, França, MC, Castro, DC, Bendassoli, JA, Macario, K. 2014. Palynofacies and stable C and N isotopes of Holocene sediments from Lake Macuco (Linhares, Espírito Santo, southeastern Brazil): depositional settings and palaeoenvironmental evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 415:6982.Google Scholar
Luz, CFP. 2012. Palynology as a Tool in Bathymetry. In: Philippe Blondel, organizer. Bathymetry and Its Applications. 1st Ed. Croácia: InTech. p 119–48.CrossRefGoogle Scholar
Luz, CFP, Barth, OM. 2000. Palinomorfos indicadores de tipos de vegetação em sedimentos holocênicos da Lagoa de Cima, norte do estado do Rio de janeiro, Brasil - Dicotyledoneae. Leandra 15:1134.Google Scholar
Martínez, S, Mahiques, MM, Burone, L. 2013. Mollusks as indicators of historical changes in an estuarine-lagoonal system (Cananéia-Iguape, SE Brazil). The Holocene 23(6):888897.Google Scholar
Martin, L, Suguio, K, Dominguez, JML. 1997. Geologia do Quaternário Costeiro do litoral Norte do Rio de Janeiro e do Espírito Santo, CPRM, Belo Horizonte, 125 p.Google Scholar
Mello, CR, Viola, MR, Curi, N, Silva, AM. 2012. Distribuição espacial da precipitação e da erosividade da chuva mensal e anual no Estado do Espírito Santo. Revista Brasileira de Ciências do Solo 36:18781891.Google Scholar
Milne, GA, Gehrels, WR, Hughes, CW, Tamisiea, ME. 2009. Identifying the causes of sea-level change. Nature Geoscience 2:471478.Google Scholar
Muller, J. 1959. Palynology of recent Orinoco delta and shelf sediments. Micropaleontology 5(1):132.Google Scholar
Murray-Wallace, CV, Woodroffe, CD. 2014. Quaternary Sea-Level Changes: A Global Perspective. New York: Cambridge University Press. 484 p.Google Scholar
Nagar, C. 1985. O Estado do Espírito Santo e a imigração italiana. Vitória: Arquivo Público do Estadual. 70 p.Google Scholar
Nascimento, TF, Chacaltana, JTA, Piccol, FP. 2013. Análise da influência do alargamento de um estreitamento na hidrodinâmica do Canal da Passagem, Vitória-ES, através de modelagem numérica. Revista Brasileira de Recursos Hídricos 18(3):3139.Google Scholar
Patterson, WA III, Edwards, KJ, Maguire, DJ. 1987. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Review 6:323.Google Scholar
Perota, C. 1974. Resultados preliminares sobre a arqueologia da região central do Estado do Espírito Santo. Programa Nacional de Pesquisas Arqueológicas. Resultados preliminares do quinto ano (1969–1970). Publicações avulsas, n o 26. Belém, Pará, Brasil. Museu Paraense Emílio Goeldi.Google Scholar
Pienkowski, AJ, Mudie, PJ, England, JH, Smith, JN, Furze, MFA. 2011. Late Holocene environmental conditions in Coronation Gulf, southwestern Canadian Arctic Archipelago: evidence from dinoflagellate cysts, other non-pollen palynomorphs, and pollen. Journal of Quaternary Science 26(8):839853.CrossRefGoogle Scholar
Punwong, P, Marchant, R, Selby, K. 2013. Holocene mangrove dynamics in Makoba Bay, Zanzibar. Palaeogeography, Palaeoclimatology, Palaeoecology 379–80:5467.Google Scholar
Rigo, D, Chacaltana, JTA. 2006. Computational modelling of mangrove effects on the hydrodynamics of Vitoria bay, Espírito Santo - Brazil. Journal of Coastal Research 1:15431545.Google Scholar
Rios, EC. 2009. Compendium of Brazilian Sea Shells. Rio Grande: Evangraf. 668 p.Google Scholar
Rhodes, AN. 1998. A method for the preparation and quantification of microscopic charcoal from terrestrial and lacustrine sediment cores. The Holocene 8(1):113117.Google Scholar
Roubik, DW, Moreno, JEP. 1991. Pollen and spores of Barro Colorado Island. Monographs in Systematics Botany. St. Louis, MO: Missouri Botanical Garden.Google Scholar
Ruschi, A. 1950. Fitogeografia do estado do Espírito Santo. Boletim do Museu de Biologia Prof. “Mello Leitão”. p 1384.Google Scholar
Saint-Hilaire, A. 1974. Viagem ao Espírito Santo e Rio Doce. São Paulo: Editora Itatiaia. 121 p.Google Scholar
Scott, L. 1992. Environmental implications and origin of microscopic Pseudoschizaea Thiegart and Frantz ex R. Potonié emend. in sediments. Journal of Biogeography 19:349354.Google Scholar
Silva, ACT, Valentin, JE, Vianna, M. 2015. Competition for space between fishing and exploratory oil drilling, observed from a drilling platform in the Espírito Santo basin, Southeastern Brazil. Brazilian Journal of Oceanography 63(1):3341.Google Scholar
Souza, VC, Lorenzi, H. 2005. Botânica sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira, baseado em APG II. Nova Odessa: Instituto Plantarum. 640 p.Google Scholar
Sritrairat, S, Peteet, DM, Kenna, TC, Sambrotto, R, Kurdyla, D, Guilderson, T. 2012. A history of vegetation, sediment and nutrient dynamics at Tivoli North Bay, Hudson estuary, New York. Estuarine, Coastal and Shelf Science 102–3:2435.CrossRefGoogle Scholar
Stancliffe, RPW. 1996. Microforaminiferal linings. In: Jansonius J, Macgregor DC, editors. Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation. p 373–9.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615621.Google Scholar
Suguio, K. 2003. Tópicos de geociências para o desenvolvimento sustentável: as regiões litorâneas. Geol. USP, Série Didática 2:140.Google Scholar
Suguio, K, Martin, L. 1978. Quaternary marine formation of the states of São Paulo and Southern Rio de Janeiro. In: International symposium on coastal evolution in the Quaternary. Brazilian National Working Group for the IGCP SP 1978. 55p. (Special Publication, n. 1)Google Scholar
Tavares, AS, Araújo, AC, Guimarães, FB. 2007. Cyperaceae ocorrentes na Baixada do Maciambú, Parque Estadual da Serra do Tabuleiro, Palhoça, SC. Revista Brasileira de Biociências 5:186188.Google Scholar
Thomaz, LD, Monteiro, R. 1997. Composição florística da Mata Atlântica de encosta da Estação Biológica de Santa Lúcia, município de Santa Tresa – ES. Boletim do Museu de Biologia Mello Leitão (Nova Série) 7:148.Google Scholar
Traverse, A. 2008. Paleopalynology. 2nd Edition. Springer. 813 p.Google Scholar
Tyson, RV. 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies Analysis. London: Chapman & Hall. 615 p.Google Scholar
Valadares, RT, Souza, FBC, Castro, NGD, Peres, ALSS, Schneider, SZ, Martins, ML. 2011. Levantamento florístico de um brejo-herbáceo localizado na restinga de Morada do Sol, município de Vila Velha, Espírito Santo, Brasil. Rodriguésia 62(4):827834.Google Scholar
Van Soelen, EE, Lammerstma, EI, Cremer, H, Donders, TH, Sangiorgi, F, Brooks, GR, Larson, RA, Damsté, JSS, Wagner-Cremer, F, Reichart, GF. 2010. Late Holocene sea-level rise in Tampa Bay: integrated reconstruction using biomarkers, pollen, organic-walled dinoflagellate cysts, and distoms. Estuarine, Coastal and Shelf Science 86:216224.Google Scholar
Wentworth, CK. 1922. A escale of grade and class terms for clastic sediments. Journal of Geology 30(5):337392.Google Scholar
Whitlock, C, Larsen, CPS. 2001. Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM, editors. Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators, Volume 3. Kluwer Academic, p 75–97.Google Scholar
Woodroffe, SA, Long, AJ, Punwong, P, Selby, K, Bryant, CL, Marchant, R. 2015. Radiocarbon dating of mangrove sediments to constrain Holocene relative sea-level change on Zanzibar in the southwest Indian Ocean. The Holocene 25(5):820831.Google Scholar
Ya, C, Anderson, W, Jaffé, R. 2015. Assessing dissolved organic matter dynamics and source strengths in a subtropical estuary: application of stable carbon isotopes and optical properties. Continental Shelf Research 92:99107.Google Scholar
Yang, Y, Siegwolf, RTW, Komer, C. 2015. Species specific and environment induced variation of 13δC and 15δN in alpine plants. Frontiers in Plant Science 6:423.Google Scholar
Ybert, JP, Salgado-Laboriau, ML, Barth, OM, Lorscheiter, ML, Barros, MA, Chaves, SAM, Luz, C.P, Ribeiro, M, Scheel, R, Vicentini, K. 1992. Sugestões para padronização da metodologia empregada em estudos palinológicos do Quaternário. Revista do Instituto Geológico de São Paulo 13:4749.Google Scholar