Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T14:00:05.843Z Has data issue: false hasContentIssue false

Radiocarbon AMS Dating of Pollen Concentrated from Eolian Sediments: Implications for Monsoon Climate Change Since the Late Quaternary

Published online by Cambridge University Press:  18 July 2016

Weijian Zhou
Affiliation:
National Laboratory of Loess and Quaternary Geology, Xi'an 710054 China
Douglas Donahue
Affiliation:
NSF-Arizona AMS Facility, University of Arizona, Tucson, Arizona 85721 USA
A. J. T. Jull
Affiliation:
NSF-Arizona AMS Facility, University of Arizona, Tucson, Arizona 85721 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dating pollen concentrated from eolian sediments provides a new way to establish a chronological framework on the Loess Plateau of China. We show that pollen deposited simultaneously with sediment in a stable environment can provide reliable ages. We suggest that the reliability of pollen dating can be evaluated by comparison with wood cellulose or charcoal ages from the same stratigraphic level. Dating pollen concentrates from the various profiles indicates paleomonsoon precipitation variability at the loess/desert transitional belt from the late Pleistocene to the early Holocene.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

An, Z. S., Porter, S. C., Zhou, W. J., Lu, Y. C., Donahue, D. J., Head, M. J., Wu, X. H., Ren, J. Z., and Zheng, H. B. 1993 Episode of strengthened summer monsoon climate of Younger Dryas age on the Loess Plateau of central China. Quaternary Research 39: 4554.Google Scholar
Brown, T. A., Nelson, D. E., Mathewes, R. W., Vogel, J. S. and Southon, J. R. 1989 Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32: 205211 CrossRefGoogle Scholar
Brown, T. A., Farwell, G. W., Grootes, P. M., and Schmidt, F. H. 1992 Radiocarbon AMS dating of pollen extracted from peat samples. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 550556.Google Scholar
Cao, S. G., 1980 Guidelines for Soil Micromorphology Study . Beijing, Agriculture Press (in Chinese).Google Scholar
Dimbleby, G. W. 1985 The Palynology of Archaeological Sites . New York, Academic Press: 176 p.Google Scholar
Donahue, D. J., Jull, A. J. T., and Zabel, T. H. 1984 Results of radioisotope measurements at the National Science Foundation / University of Arizona tandem accelerator mass spectrometer facility. Nuclear Instruments and Methods in Physics Research 219(B): 162166.Google Scholar
Head, M. J., Zhou, W., and Zhou, M. 1989 Evaluation of the 14C ages of organic fractions from loess paleosol sequences near Xian, China. In Long, A., Kra, R. S. and Srdoč, D., eds, Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 680694.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., Mclntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. and Shackleton, N. J. 1984 The orbital theory of Pleistocene climate: Support from a revised chronology of the marine 18O record. In Berger, A., Imbrie, J., Hays, J., Kukla, G. and Saltzman, B., eds., Milankovitch and Climate (Part 1) . Dordrecht, Reidel: 269305.Google Scholar
Ke, M. H. 1994 A method of pollen-spore analysis in loess. Acta Botanica Sinica 36(2): 144147.Google Scholar
Long, A., Davis, O. K., and Lanois, J. D. 1992 Separation and 14C dating of pure pollen from lake sediments: Nanofossil AMS dating. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 557560.CrossRefGoogle Scholar
Mulholland, S. C. and Prior, C. 1992 Processing of phytoliths for radiocarbon dating by AMS. Phytolitharian Newsletter 7(2): 79.Google Scholar
Regnell, J. 1992 Preparing pollen concentrates for AMS dating: A methodological study from a hard-water lake in southern Sweden. Boreas 21: 373377.CrossRefGoogle Scholar
Slota, P. J., Jull, A. J. T., Linick, T. W. and Toolin, L. J. 1987 Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2): 303306.Google Scholar
Wilding, L. P. 1967 Radiocarbon dating of biogenetic opal. Science 156: 6667.CrossRefGoogle ScholarPubMed
Wu, N. Q., Lu, H. Y., Nie, G. Z., Wang, Y. J., Meng, Y. and Gu, G. A. 1992 The study of phytoliths in C3 and C4 grasses and its paleoecological significance. Quaternary Sciences 3: 241251 (in Chinese).Google Scholar
Zhang, J. C., and Lin, Z. G. 1992 Climate of China. Trans. Tan, D. New York, John Wiley: 376 p.Google Scholar
Zhou, W. J., Zhou, M. F., and Head, M. J. 1990 14C Chronology of Beizhuangcun sedimentation sequence since 30,000 years B.P. Chinese Science Bulletin 35(7): 567572.Google Scholar
Zhou, W. J., An, Z. S., Lin, B. H., Xiao, J. Zhang, J. Z., Xie, J., Zhou, M. F., Porter, S. C., Head, M. J. and Donahue, D. J. 1992 Chronology of the Baxie loess profile and the history of monsoon climates in China between 17,000 and 6000 years bp. In Long, A. and Kra, R. S., eds. Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 818825.CrossRefGoogle Scholar
Zhou, W. J., Donahue, D. J., Porter, S. C., Jull, A. J. T., Li, X. Q. Stuiver, M., An, Z. S., Matsumoto, E., and Gong, G. R. 1996 Variability of monsoon climate in East Asia at the end of last glaciation. Quaternary Research , in press.Google Scholar
Zhou, W. J. (ms.) 1995 Monsoon climate change in the environmentally sensitive zone of inland China in the last 13,000 yr and its 14C chronology. Ph.D dissertation, Northwest University, Xian, China.Google Scholar