Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T05:38:00.821Z Has data issue: false hasContentIssue false

Radiocarbon and Uranium-Series Dating of the Plitvice Lakes Travertines

Published online by Cambridge University Press:  18 July 2016

Dušan Srdoč
Affiliation:
Brookhaven National Laboratory, S&EP, Bldg. 535A, P.O. Box 5000, Upton, New York, 11973-5000 USA Rudjer Bošković Institute, P.O.B. 1016, Bijenička 41001 Zagreb, Croatia
J. K. Osmond
Affiliation:
Department of Geology, Florida State University, Tallahassee, Florida 32306 USA
Nada Horvatinčić
Affiliation:
Rudjer Bošković Institute, P.O.B. 1016, Bijenička 41001 Zagreb, Croatia
Adel A. Dabous
Affiliation:
Geology Department, Ain Shams University, Cairo, Egypt
Bogomil Obelić
Affiliation:
Rudjer Bošković Institute, P.O.B. 1016, Bijenička 41001 Zagreb, Croatia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon and uranium-series ages of the calcareous deposits of the Plitvice Lakes show that travertines were deposited during three warm, humid, interglacial oxygen isotope stages. According to our measurements, only calcite crystals or crystal aggregates represent reliable material for both 230Th/234U and 234U/238/U dating. Compact old travertine in the form of sandstone is less reliable; it can be dated by both methods provided that its detrital contamination is not significant, demonstrated by very low 14C activity (< 1.5–2.0 pMC) and a high 230Th/232Th ratio. Old porous travertine contaminated with recent carbonates and Th-bearing clay (pMC > 5, 230Th/232Th < 5) gives erroneous results by both methods. Stage 1 (Holocene) deposition is shown primarily by 14C dating corroborated by sedimentological and palynologic studies as well as by both 230Th/234U and 234U/238U disequilibrium methods. The intensive growth of travertine barriers coincided with significant climate warming in the Holocene. Stage 5 deposition is confirmed by the 230Th/234U dating of crystalline calcite aggregates embedded in the travertine matrix and by concordant 230Th/234U and 234U/238U ages, assuming that the 234U/238U activity ratio of 1.88 observed in modern streams and in Holocene deposits can be extended to past epochs. The travertine deposition period was very short, peaking ca. 120 ± 10 ka bp. Stage 11 deposition is indicated by 234U/238U dating only, the period being within the 234U decay range, but not that of 230Th. Stage 11 travertine was deposited ca. 420 ± 50 ka bp. We did not find travertine samples with U-series ages indicating a growth period during relatively warm Stages 7 and 9; due to the scarcity of old travertine outcrops, these and possibly other stages cannot be excluded on the basis of presented data. All of these isotopic dating results concur with the field relation of the travertine complex of the Plitvice Lakes.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Atkinson, T. C. and Harmon, R. S. 1978 Paleolithic and geomorphic implications of 230Th/234U dates on speleothems from Britain. Nature 272: 2426.CrossRefGoogle Scholar
Bard, E., Arnold, M., Maurice, P., Dupart, J. and Duplessy, J.-C. 1987 Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328: 791794.CrossRefGoogle Scholar
Baskaran, M., Rajagopalan, G. and Somayajulu, B. L. K. 1989 230Th/234U and 14C dating of the Quaternary carbonate deposits of Saurashtra, India. Chemical Geology-Isotope Geoscience 79: 6582.CrossRefGoogle Scholar
Beget, E. J. 1983 Radiocarbon-dated evidence of worldwide early Holocene climate change. Geology 11: 389393.2.0.CO;2>CrossRefGoogle Scholar
Bischoff, J. L. and Fitzpatrick, J. A. 1991 U-series dating of impure carbonates: An isochron technique using total-sample dissolution. Geochimica et Cosmochimica Acta 55: 543554.CrossRefGoogle Scholar
Blackwell, B. and Schwarcz, H. P. 1986 U-series analyses of the lower travertine at Ehringsdorf, DDR. Quaternary Research 25: 215222.CrossRefGoogle Scholar
Brook, G. A., Burney, D. A. and Cowart, J. B. 1990 Desert paleoenvironmental data from cave speleothems with examples from the Chihuahuan, Somali-Chabi and Kalahari deserts. Paleogeography, Paleoclimatology, Paleoecology 76: 311329.CrossRefGoogle Scholar
Burckle, L. H. (ms.) Late Quaternary interglacial stages warmer than present (unpublished data).Google Scholar
Burr, G. S., Edwards, R. L., Donahue, D. J., Druffel, E. R. M. and Taylor, F. W. 1992 Mass spectrometric 14C and U/Th measurements in coral. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 611618.CrossRefGoogle Scholar
Chafetz, H., and Folk, R. L. 1984 Travertines - depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology 54: 289316.Google Scholar
Chafetz, S. H., Srdoč, D. and Horvatinčić, N. 1990 Pervasive sparmicritization of waterfall and barrier travertines, Plitvice National Park, Croatia, Yugoslavia. 13th International Sedimentological Congress, Nottingham, England, 82–83. Abstract.Google Scholar
Chafetz, S. H., Srdoč, D. and Horvatinčić, N. 1994 Early diagenesis of Plitvice Lakes waterfall and barrier travertine deposits. Géographie Physique et Quaternaire, in press.Google Scholar
Fontes, J.-C. 1983 Dating of groundwater. In Guidebook on Nuclear Techniques in Hydrology. Vienna, IAEA, Technical Report Series 91: 285317.Google Scholar
Fontes, J.-C. Andrews, J. N., Causse, C. and Gibert, E. 1992 A comparison of radiocarbon and U/Th ages on continental carbonates. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 602610.CrossRefGoogle Scholar
Gascoyne, M. and Nelson, D. E. 1983 Growth mechanisms of recent speleothems from Castleguard Cave, Columbia icefields, Alberta, Canada, inferred from a comparison of uranium-series and 14C age data. Arctic and Alpine Research 15: 537542.CrossRefGoogle Scholar
Geyh, M. A. and Hennig, G. J. 1986 Multiple dating of a long flowstone profile. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 503509.CrossRefGoogle Scholar
Golubić, S. 1973 The relationship between blue-green algae and carbonate deposits. In Carr, N. G. and Whitton, B. A., eds., The Biology of Blue-Green Algae. Blackwell, Oxford: 434472.Google Scholar
Harmon, R. S., Ford, D. C. and Schwarcz, H. P. 1977 Interglacial chronology of the Rock and Mackenzie Mountains based upon 230Th/234U dating of calcite speleothems. Canadian Journal of Earth Sciences 14: 25432552.CrossRefGoogle Scholar
Harmon, R. S., Glazek, J. and Nowak, K. 1980 230Th/234U dating of travertine from the Bilzingsleben archaeological site. Nature 284: 132135.CrossRefGoogle Scholar
Harmon, R. S., Schwarcz, H. P. and Ford, D. C. 1977 Stable isotope geochemistry of speleothem and cave waters from the Flint Ridge-Mammoth Cave system, Kentucky: Implications for terrestrial climate change during the period 230,000 to 100,000 years B.P. Journal of Geology 86: 373384.CrossRefGoogle Scholar
Harmon, R. S., Schwarcz, H. P., Thompson, P. and Ford, D. C. 1978 Critical comment on “Uranium series dating of stalagmites from Blanchard Springs Cavern, Arkansas, U.S.A.”. Geochimica et Cosmochimica Acta 42: 433439.CrossRefGoogle Scholar
Harmon, R. S., Thompson, P., Schwarcz, H. P. and Ford, D. C. 1975 Uranium-series dating of speleothems. National Speleological Society Bulletin 37: 2133.Google Scholar
Hennig, G. J., Bangert, U. and Herr, W. 1980 Dating of speleothem by disequilibria in the U-decay series. British Museum Occasional Paper 21: 73.Google Scholar
Hennig, G. J., Grün, R. and Brunnacker, K. 1983 Speleothems, travertines, and paleoclimates. Quaternary Research 20: 129.CrossRefGoogle Scholar
Horvatinčić, N. (ms.) 1985 Radiocarbon Age Measurements of Tufa Deposits from the Plitvice Lakes Area (in Croatian with English summary). Ph.D. Dissertation, Zagreb University, Croatia.Google Scholar
Horvatinčić, N., Srdoč, D., Šilar, J. and Tvrdikova, H. 1989 Comparison of the 14C activity of groundwater and recent tufa from karst areas in Yugoslavia and Czechoslovakia. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 884892.CrossRefGoogle Scholar
Ivanovich, M. and Murray, A. 1992 Spectrometric methods. In Ivanovich, M. and Harmon, R., eds., Uranium Series Disequilibrium: Applications to Environmental Problems, Second edition. Oxford, Oxford University Press: 127173.Google Scholar
Krajcar Bronić, I., Horvatinčić, N., Srdoč, D. and Obelić, B. 1992 Experimental determination of the 14C initial activity of calcareous deposits. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 593601.CrossRefGoogle Scholar
Krajcar Bronić, I., Horvatinčić, N., Srdoč, D. and Obelić, B. 1986 On the initial 14C activity of karst aquifers with short mean residence time. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 436440.CrossRefGoogle Scholar
Kronfeld, J., Vogel, J. C., Rosenthal, E. and Weinstein-Evron, M. 1988 Age and climatic implications of the Bet Shean Travertines. Quaternary Research 30: 298303.CrossRefGoogle Scholar
Ku, T. L. 1976 The uranium-series methods of age determination. Annual Review of Earth and Planetary Sciences 4: 347379.CrossRefGoogle Scholar
Lally, A. E. 1992 Chemical procedures. In Ivanovich, M. and Harmon, R., eds., Uranium Series Disequilibrium: Applications to Environmental Problems, Second edition. Oxford, Oxford University Press: 79106.Google Scholar
Lamb, H. H., Lewis, R. and Woodroffe, A. 1966 Atmospheric circulation and the main climatic variables. Proceedings of the International Symposium on World Climate from 8000 to 0 B.C. London, Royal Meteorological Society: 174 p.Google Scholar
Latham, A. G. and Schwarcz, H. P. 1992 Carbonate and sulphate precipitates. In Ivanovich, M. and Harmon, R., eds., Uranium Series Disequilibrium: Applications to Environmental Problems, Second edition. Oxford, Oxford University Press: 423459.Google Scholar
Mahaney, W. C., ed. 1984 Quaternary Dating Methods. Amsterdam, Elsevier Scientific Publishing Co.Google Scholar
Marčenko, E., Srdoč, D., Golubić, S., Pezdič, J. and Head, M. J. 1989 Carbon uptake in aquatic plants deduced from their natural 13C and 14C content. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 785794.CrossRefGoogle Scholar
Mas-Pla, J., Trilla, J. and Valls, M. L. 1992 Radiocarbon dating of travertines precipitated from freshwater. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 677685.CrossRefGoogle Scholar
Mook, W. G. 1976 The dissolution-exchange model for dating groundwater with 14C. Interpretation of environmental isotope and hydrochemical data. In Groundwater Hydrology. Vienna, IAEA: 213225.Google Scholar
Mook, W. G. 1980 Carbon-14 in hydrology studies. In Fritz, P. and Fontes, J. C., eds., Handbook of Environmental Isotope Geochemistry 1: 4974. Amsterdam, Elsevier Scientific Publishing Co.Google Scholar
Obelić, B., Horvatinčić, N., Srdoč, D., Krajcar Bronić, I, and Sliepčević, A. 1994 Rudjer Bošković Institute Radiocarbon Measurements XIII. Radiocarbon, this issue.CrossRefGoogle Scholar
Oppo, D. W., Fairbanks, R. G. and Gordon, A. L. 1990 Late Pleistocene Southern Ocean 13C variability. Paleoceanography 5: 4354.CrossRefGoogle Scholar
Osmond, J. K. and Cowart, J. B. 1976 The theory and uses of natural uranium isotopic variations in hydrology. Atomic Energy Review 14: 621679.Google Scholar
Osmond, J. K. and Cowart, J. B. 1992 Ground water. In Ivanovich, M. and Harmon, R., eds. Uranium Series Disequilibrium: Applications to Environmental Problems, Second edition. Oxford, Oxford University Press: 290323.Google Scholar
Osmond, J. K. and Ivanovich, M. 1992 Uranium-series mobilization and surface hydrology. In Ivanovich, M. and Harmon, R., eds., Uranium Series Disequilibrium: Applications to Environmental Problems, Second edition. Oxford, Oxford University Press: 259289.Google Scholar
Pazdur, A. 1988 The relation between carbon isotope composition and apparent age of freshwater tufaceous sediments. Radiocarbon 30(1): 718.CrossRefGoogle Scholar
Pazdur, A., Pazdur, M. F. and Szulc, J. 1988 Radiocarbon dating of Holocene calcareous tufa in southern Poland. Radiocarbon 30(2): 133151.CrossRefGoogle Scholar
Pentecost, A., Thorpe, P. M., Harkness, D. D. and Lord, T. C. 1990 Some radiocarbon dates for tufa of the Craven district of Yorkshire. Radiocarbon 32(1): 9397.CrossRefGoogle Scholar
Polšak, A. 1979a Upper Cretaceous beds of the Northwestern part of outer Dinarides; Lika, Croatian littoral and Istria. In Proceedings of the 16th European Micropaleontological Colloquium. Slovenian Academy of Sciences, Ljubljana, Slovenia: 101106.Google Scholar
Polšak, A. 1979b The Plitvice Lakes. In Proceedings of the 16th European Micropaleontological Colloquium, Slovenian Academy of Sciences. Slovenian Academy of Sciences, Ljubljana, Slovenia: 157162.Google Scholar
Rousseau, D.-D., Puissegur, J.-J. and Lecolle, F. 1992 West-European mollusc assemblages of isotopic stage 11 (middle Pleistocene): Climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 92: 1529.CrossRefGoogle Scholar
Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. and Backman, J. 1989 Pleistocene evolution of northern hemisphere climate. Paleoceanography 4: 353412.CrossRefGoogle Scholar
Schwarcz, H. P. 1980 Absolute age determination of archaeological sites by uranium series dating of travertine. Archaeometry 22(1): 324.CrossRefGoogle Scholar
Schwarcz, H. P., Blackwell, B., Goldberg, P. and Marks, A. E. 1979 Uranium series dating of travertine from archaeological sites, Nahal Zin, Israel. Nature 211: 558560.CrossRefGoogle Scholar
Schwarcz, H. P. and Latham, A. G. 1989 Uranium series dating of contaminated calcite using leachates alone. Chemical Geology (Isotope Geoscience Section) 80: 3543.CrossRefGoogle Scholar
Srdoč, D. 1986 The response of hydrological systems to the variations of the 14C activity of the atmosphere. In Povinec, P. ed., Proceedings of the 3rd International Conference on Low Radioactivity Measurement and Application, Bratislava. Nuclear Instruments and Methods in Physic Research B17: 545549.CrossRefGoogle Scholar
Srdoč, D., Breyer, B. and Sliepčević, A. 1971 Rudjer Bošković Institute radiocarbon measurements I. Radiocarbon 13(1): 135140.CrossRefGoogle Scholar
Srdoč, D., Chafetz, H. and Utech, N. 1989 Radiocarbon dating of travertine deposits, Arbuckle Mts., Oklahoma. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 619626.CrossRefGoogle Scholar
Srdoč, D., Krajcar Bronić, I., Horvatinčić, N. and Obelić, B. 1986a The increase of 14C activity of dissolved inorganic carbon along the river course. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 515521.CrossRefGoogle Scholar
Srdoč, D., Obelić, B., Horvatinčić, N. Culiberg, M., Šercelj, A. and Sliepčević, A. 1985a Radiocarbon dating and pollen analyses of two peat bogs in the Plitvice National Park. Acta Botanica Croatica 44: 4146.Google Scholar
Srdoč, D., Obelić, B., Horvatinčić, N. and Sliepčević, A., 1980 Radiocarbon dating of calcareous tufa; How reliable data can we expect? In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 858862.CrossRefGoogle Scholar
Srdoč, D., Obelić, B., Horvatinčić, N., Krajcar Bronić, I., Marčenko, E., Merkt, S., Wong, H. K. and Sliepčević, A. 1986b Radiocarbon dating of lake sediments from two karstic lakes in Yugoslavia. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 495502.CrossRefGoogle Scholar
Srdoč, D., Obelić, B., Sliepčević, A., Krajcar Bronić, I. and Horvatinčić, N. 1987 Rudjer Bošković Institute radiocarbon measurements X. Radiocarbon 29(1): 135147.CrossRefGoogle Scholar
Srdoč, D., Sliepčević, A., Obelić, B., and Horvatinčić, N. 1977 Rudjer Bošković Institute radiocarbon measurements IV. Radiocarbon 19(3): 465475.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Ahel, M., Giger, W., Schaffner, C., Krajcar Bronić, I., Petricioli, D., Pezdič, J., Marčenko, E. and Plenković, A. 1992a Anthropogenic influence on the 14C activity of recent lake sediment. A case study. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 585592.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Krajcar Bronić, I. Obelić, B. and Sliepčević, A. 1992b Rudjer Bošković Institute radiocarbon measurements XII. Radiocarbon 34(1): 155175.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Obelić, B. and Sliepčević, A. 1982 Rudjer Bošković Institute radiocarbon measurements VII. Radiocarbon 24(3): 352371.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar, I. and Sliepčević, A. 1985b Calcite deposition processes in karstwaters with special emphasis on the Plitvice Lakes, Yugoslavia. Carsus Iugoslaviae 11/4–6: 101204 (in Croatian, with extended English abstract).Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar-Bronić, I. and O'Malley, P. 1986c The effects of contamination of calcareous sediments on their radiocarbon age. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 510514.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar Bronić, I. and Sliepčević, A. 1987 Rudjer Boškovic Institute radiocarbon measurements IX. Radiocarbon 29(1): 115147.CrossRefGoogle Scholar
Szabo, B. J. 1990 Ages of travertine deposits in Eastern Grand Canyon National Park, Arizona. Quaternary Research 34: 2432.CrossRefGoogle Scholar
Tamers, M. A. 1967 Surface-water infiltration and groundwater movement in arid zones of Venezuela. In Isotope Hydrology. Vienna, IAEA: 241257.Google Scholar
Thompson, G., Lumsden, N., Walker, R. and Carter, J. 1975 Uranium series dating of stalagmites from Blanchard Springs Cavern, U.S.A. Geochimica et Cosmochimica Acta 39: 12111218.CrossRefGoogle Scholar
Thompson, P., Ford, D. C. and Schwarcz, H. P. 1975 234U/238U ratios in limestone cave seepage waters and speleothems from West Virginia. Geochimica et Cosmochimica Acta 39: 661669.CrossRefGoogle Scholar
Thorpe, P. M., Otlet, R. L. and Sweeting, M. M. 1980 Hydrological implications from 14C profiling of UK tufa. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 897908.CrossRefGoogle Scholar