Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T07:20:36.311Z Has data issue: false hasContentIssue false

Radiocarbon Calibration and Application to Geophysics, Solar Physics, and Astrophysics

Published online by Cambridge University Press:  18 July 2016

Paul E Damon
Affiliation:
Department of Geosciences, Gould-Simpson 208, the University of Arizona, Tucson, Arizona 85721 USA. Email: pedamon@geo.arizona.edu; peristy@geo.arizona.edu.
Alexei N Peristykh
Affiliation:
Department of Geosciences, Gould-Simpson 208, the University of Arizona, Tucson, Arizona 85721 USA. Email: pedamon@geo.arizona.edu; peristy@geo.arizona.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper includes a brief history of the calibration of the radiocarbon time scale from the first recognition of the necessity of calibration in 1962 to INTCAL98. Thirty-six years of effort by dendrochronologists and the 14C community have pushed the tree-ring calibration back to 11,854 yr BP. All of this part of the calibration has been done by high-precision beta counting. Uranium-thorium (U-Th) dating of coral samples coupled with accelerator mass spectrometry (AMS) measurement of 14C has extended a fairly detailed calibration back beyond the Bølling warm episode to 15,000 BP. Earlier than 15,000 BP, piecewise linear approximation extends INTCAL98 calibration to 24,200 BP.

Blending 1-, 2-, 3-, 10-, and 20-yr tree-ring samples containing regional and data offsets into a decadal time scale does not make an ideal error and bias free δ14C record. Nevertheless, spectral analysis reveals some statistically significant fundamental frequencies as well as interesting “beat” frequencies and the second harmonic of the around 208-yr cycle that is considered to be solar in origin. Although, some very prominent peaks such as the 88-yr (Gleissberg) are clearly solar in origin, some of the lower frequencies such as of the 512-yr period may have an origin in thermohaline circulation. Thus, INTCAL98 provides useful data for geophysical and solar physics research. Lastly, single year δ14C analysis would be useful for revealing invaluable information for solar physics, astrophysics and geophysics not accessible by decadal data. We provide several examples.

Type
Research Article
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Aschenbach, B. 1998. Discovery of a young nearby supernova remnant. Nature 396(6707):141–2.Google Scholar
Bard, E, Arnold, M, Fairbanks, RG, Hamelin, B. 1993. 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35(1):191–9.Google Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th-234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Becker, B. 1993. An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. Radiocarbon 35(1):201–13.CrossRefGoogle Scholar
Bennett, CL, Beukens, RP, Clover, MR, Gove, HE, Liebert, RB, Litherland, AE, Purser, KH, Sondheim, WE. 1977. Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198(4316):508–10.CrossRefGoogle ScholarPubMed
Berezinskii, VS, Ginzburg, VL. 1990. Astrophysics of cosmic rays. Amsterdam and New York: North-Holland.Google Scholar
Braziunas, TF, Fung, IY, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9(4):565–84.Google Scholar
Broecker, WS. 1991. The great ocean conveyor. Oceanography 4(2):7989.Google Scholar
Broecker, WS, Olson, EA. 1959. Lamont radiocarbon measurements VI. American Journal of Science, Radiocarbon Supplement 1:111–32.Google Scholar
Burr, GS, Beck, JW, Taylor, FW, Recy, J, Edwards, RL, Cabioch, G, Correge, T, Donahue, DJ, O'Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):1093–109.Google Scholar
Cadzow, JA. 1987. Foundations of digital signal processing and data analysis. New York: Macmillan.Google Scholar
Cook, ER, Peters, K. 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41:4553.Google Scholar
Damon, PE. 1987. The history of the calibration of radiocarbon dates by dendrochronology. In: Aurenche, O, Evin, J, Hours, F, editors. Chronologies in the Near East: relative chronologies and absolute chronology 16,000-4,000 B.P. Lyon, France: BAR International Series 379, Archaeological Series 3. p 61104.Google Scholar
Damon, PE. 1995. A note concerning “Location-dependent differences in the 14C content of wood” by McCormac et al. Radiocarbon 37(2):829–30.Google Scholar
Damon, PE, Burr, G, Peristykh, AN. 1999. A14C and Ekman transport, spiral and west coast upwelling. In: Storohmaier, B, compiler. 8th International Conference on Accelerator Mass Spectrometry, Vienna, Austria, 6–10 September, 1999, Conf. Compendium. Vienna, Austria. p 101.Google Scholar
Damon, PE, Burr, G, Peristykh, AN, Jacoby, GC, D'Arrigo, RD. 1996. Regional radiocarbon effect due to thawing of frozen earth. Radiocarbon 38(3):597602.CrossRefGoogle Scholar
Damon, PE, Cheng, S, Linick, TW. 1989. Fine and hyper-fine structure in the spectrum of secular variations of atmospheric 14C. Radiocarbon 31(3):704–18.Google Scholar
Damon, PE, Dai, K, Kocharov, GE, Mikheeva, IB, Peristykh, AN. 1995. Radiocarbon production by the gamma-ray component of supernova explosions. Radiocarbon 37(2):599604.Google Scholar
Damon, PE, Eastoe, CJ, Hughes, MK, Kalin, RM, Long, A, Peristykh, AN. 1998. Secular variation of Δ14C during the Medieval Solar Maximum: a progress report. Radiocarbon 40(1):343–50.Google Scholar
Damon, PE, Jirikowic, JL. 1992a. Solar forcing of global climate change?. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon after four decades: an interdisciplinary perspective. New York: Springer-Verlag. p 117–29.Google Scholar
Damon, PE, Jirikowic, JL. 1992b. The Sun as a low-frequency harmonic oscillator. Radiocarbon 34(2):199205.CrossRefGoogle Scholar
Damon, PE, Lerman, JC, Long, A, Bannister, B, Klein, J, Linick, TW. 1980. Report on the workshop on the calibration of the radiocarbon time scale. Radiocarbon 22(3):947–9.Google Scholar
Damon, PE, Long, A. 1962. Arizona radiocarbon dates III. Radiocarbon 4:239–49.Google Scholar
Damon, PE, Long, A, Sigalove, JJ. 1963. Arizona radiocarbon dates IV. Radiocarbon 5:283301.Google Scholar
Damon, PE, Peristykh, AN. 1999. Solar cycle length and 20th century Northern Hemisphere warming: revisited. Geophysical Research Letters 26(16):2469–72.Google Scholar
Damon, PE, Sonett, CP. 1991. Solar and terrestrial components of the atmospheric 14C variation spectrum. In: Sonett, CP, Giampapa, MS, Matthews, MS, editors. The Sun in time. Tucson: University of Arizona Press. p 360–88.Google Scholar
Dansgaard, W, Johnsen, SJ, Calusen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, JP, Sveinbjornsdottir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–20.Google Scholar
De Jong, AFM, Mook, WG, Becker, B. 1979. Confirmation of the Suess wiggles: 3200–3700 BC. Nature 280(5717):48–9.CrossRefGoogle Scholar
De Vries, H. 1958. Variation in concentration of radiocarbon with time and location on Earth. Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings, Series B 61:94102.Google Scholar
De Vries, H. 1959. Measurement and use of natural radiocarbon. In: Abelson, PH, editor. Researches in geochemistry. New York: John Wiley & Sons. p 169–89.Google Scholar
Eddy, JA. 1976. The Maunder Minimum. Science 192(4245):1189–118.Google Scholar
Eddy, JA. 1977. Climate and the changing sun. Climatic Change 1(2):173–90.CrossRefGoogle Scholar
Giordano, AA, Hsu, FM. 1985. Least square estimation with applications to digital signal processing. New York: Wiley.Google Scholar
Gleissberg, W. 1944. A table of secular variations of the solar cycle. Terrestrial Magnetism and Atmospheric Electricity 49(4):243–4.CrossRefGoogle Scholar
Godwin, H. 1962. Radiocarbon dating: fifth international conference. Nature 195(4845):943–5.Google Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Rozanski, K, Tisnerat, N, Walanus, A, Wicik, B, Wieckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377(6548):414–7.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, JR, Peterson, LC. 1998. A new 14C calibration data set for the last deglaciation based on marine varves. Radiocarbon 40(1):483–94.Google Scholar
Iyudin, AF, Schonfelder, V, Bennett, K, Bloemen, H, Diehl, R, Hermsen, W, Lichti, GG, Van der Meulen, RD, Ryan, J, Winkler, C. 1998. Emission from 44Ti associated with a previously unknown Galactic supernova. Nature 396(6707):142–4.Google Scholar
Jirikowic, JL, Damon, PE. 1994. The Medieval Solar Activity Maximum. Climatic Change 26(2/3):309–16.Google Scholar
Kennett, JP. 1982. Marine geology. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Klein, J, Lerman, JC, Damon, PE, Linick, TW. 1980. Radiocarbon concentration in the atmosphere: 8000-year record of variations in tree rings. First results of a USA workshop. Radiocarbon 22(3):950–61.Google Scholar
Klein, J, Lerman, JC, Damon, PE, Ralph, EK. 1982. Calibration of radiocarbon dates: tables based on the consensus data of the Workshop on Calibrating the Radiocarbon Time Scale. Radiocarbon 24(2):103–50.Google Scholar
Lamb, HH. 1965. The Early Medieval Warm Epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1:1337.Google Scholar
Lerman, JC, Mook, WG, Vogel, JC. 1970. Radial translocation of carbon in bristlecone pine. In: Olsson, IU, editor. Radiocarbon variations and absolute chronology. Stockholm: Almqvist & Wiksell, p 275301.Google Scholar
Lingenfelter, RE, Ramaty, R. 1970. Astrophysical and geophysical variation in C14 production. In: Olsson, IU, editor. Radiocarbon variations and absolute chronology. Stockholm: Almqvist & Wiksell. p 513–35.Google Scholar
Mann, WB, Marlow, WF, Hughes, EE. 1961. The half-life of carbon-14. International Journal of Applied Radiation and Isotopes 11(2/3):5767.Google Scholar
Murdin, P. 1985. Supernovae. Cambridge and New York: Cambridge University Press.Google Scholar
Nelson, DE, Korteling, RG, Stott, WR. 1977. Carbon-14: direct detection at natural concentrations. Science 198(4316):507–8.Google Scholar
Olsson, IU, editor. 1970 Radiocarbon variations and absolute chronology. Proceedings of the 12th Nobel Symposium. Stockholm: Almqvist & Wiksell.Google Scholar
Olsson, IU, Karlén, I, Turnbull, AH, Prosser, NJD. 1962. A determination of the half-life of 14C with a proportional counter. Arkiv für Fysik 22(14):237–55.Google Scholar
Pearson, GW, Pilcher, JR, Baillie, MGL, Hillam, J. 1977. Absolute radiocarbon dating using a low altitude European tree-ring calibration. Nature 270(5632):25–8.CrossRefGoogle Scholar
Pearson, GW, Qua, F. 1993. High-precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840–5000 BC: a correction. Radiocarbon 35(1):105–23.CrossRefGoogle Scholar
Peristykh, AN, Damon, PE. 1995. Cosmogenic isotope evidence of very high solar flare activity at the end of XIX century. Eos, Transactions, American Geophysical Union 76(46, Suppl):688.Google Scholar
Peristykh, AN, Damon, PE. 1999. Multiple evidence of intense solar proton events during solar cycle 13. In Kieda, D, Salamon, M, Dingus, B, editors. 26th International Cosmic Ray Conference. Salt Lake City, 1999. Vol. 6. Salt Lake City. p 264–7.Google Scholar
Pestiaux, P, Van der Mersch, I, Berger, A, Duplessy, JC. 1988. Paleoclimatic variability at frequencies ranging from 1 cycle per 10000 years to 1 cycle per 1000 years: evidence for nonlinear behaviour of the climate system. Climatic Change 12(1):937.Google Scholar
Ralph, EK, Stuckenrath, R. 1960. Carbon-14 measurements of known age samples. Nature 188:185–7.Google Scholar
Reinsch, CH. 1967. Smoothing by spline functions. Numerische Mathematik 10:177–83.Google Scholar
Renfrew, C. 1973. Before Civilization. New York: Knopf.Google Scholar
Schmidt, B, Gruhle, W. 1988. Klima, Radiokohlenstoffgehalt und Dendrochronologie. Naturwissenschaftliche Rundschau 41(5):177–82.Google Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, HH, Kromer, B. 1998. Revisions and extension of the Hohenheim oak and pine chronologies: new evidence about the timing of the Younger Dryas/ Preboreal transition. Radiocarbon 40(3):1107–16.Google Scholar
Stuiver, M, Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon 35(1):3566.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric CO2: an evaluation of causal and spectral relationships. Holocene 3(4):289305.Google Scholar
Stuiver, M, Braziunas, TF. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25(3):329–32.Google Scholar
Stuiver, M, Braziunas, TF, Grootes, PM, Zielinski, GA. 1997. Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record? Quaternary Research 48(3):259–66.CrossRefGoogle Scholar
Stuiver, M. Kra, R, editors. 1986. Calibration Issue. Radiocarbon 28(2B).Google Scholar
Stuiver, M, Long, A, Kra, R, editors. 1993. Calibration 1993. Radiocarbon 35(1).Google Scholar
Stuiver, M, Reimer, PJ. 1986. A computer-program for radiocarbon age calibration. Radiocarbon 28(2B):1022–30.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, Van der Plicht, J, Spurk, M. 1998a. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.CrossRefGoogle Scholar
Stuiver, M, Van der Plicht, J. 1998. INTCAL98: Calibration Issue. Radiocarbon 40(3).Google Scholar
Suess, HE. 1961. Secular changes in the concentration of atmospheric radiocarbon. Problems Related to Interplanetary Matter (Proceedings of the Informal Conference, Highland Park, Illinois. 20–22 June 1960). Washington DC: NAS–NRC Publication 845. p 90–5.Google Scholar
Vogel, JC, Fuls, A, Visser, E, Becker, B. 1993. Pretoria calibration curve for short-lived samples, 1930–3350 BC. Radiocarbon 35(1):7385.Google Scholar
Watt, DE, Ramsden, D, Wilson, HW. 1961. The half-life of carbon-14. International Journal of Applied Radiation and Isotopes 11(2/3):6874.Google Scholar
Willis, EH, Tauber, H, Münnich, KO. 1960. Variations in the atmospheric radiocarbon concentration over the past 1300 years. Radiocarbon 2:14.Google Scholar
Wohlfarth, B. 1996. The chronology of the last termination: a review of radiocarbon-dated, high-resolution terrestrial stratigraphies. Quaternary Science Reviews 15(4):267–84.Google Scholar