Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T20:29:20.821Z Has data issue: false hasContentIssue false

Radiocarbon Chronologies of Holocene Lacustrine Sediments from the Southern Coast of Buenos Aires Province, Argentina

Published online by Cambridge University Press:  18 July 2016

Sonia L Fontana*
Affiliation:
Department of Geography, The University of Liverpool, Roxby Building, L69 7ZQ Liverpool, United Kingdom. Also: Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, SE 752 36 Uppsala, Sweden. Email: sonia.fontana@liv.ac.uk; sonia.fontana@geo.uu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two lacustrine sediment sequences, La Olla 1 and Laguna del Sauce Grande, on the southern coast of Buenos Aires Province, Argentina, were investigated for carbon reservoir effects, which may influence age-depth chronologies. Fruits of the submerged macrophyte Ruppia cf. maritima from the La Olla 1 sequence, and gastropod shells of Heleobia parchappii from the Laguna del Sauce Grande core, were radiocarbon dated. In addition, terrestrial plant remains and shells of living specimens were dated to assess the presence and magnitude of a reservoir effect. A reservoir age of about 800 14C yr is estimated for the aquatic plant samples of La Olla 1 for the early Holocene. The reservoir effect is attributed to the in wash of 14C-deficient bicarbonate from the surrounding sand dunes. The decay of marine organisms and salt spray are likely the main sources of 14C-deficient carbon. The magnitude of the reservoir effect is consistent with marine reservoir offsets reported for the region. The 14C measurements on shells of living and fossil specimens of Heleobia parchappii indicate the absence of a reservoir effect at Laguna del Sauce Grande, which may be due to the large size and shallow nature of the lake. This study shows how the reservoir ages of 2 close-by lakes in very similar geological settings can be largely different. These results have significant implications for the interpretation of 14C dates from lacustrine deposits in the region.

Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Abbott, MB, Binford, MW, Brenner, M, Kelts, KR. 1997. A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47(2):169–80.Google Scholar
Aguirre, ML, Whatley, RC. 1995. Late Quaternary marginal marine deposits and palaeoenvironments from northeastern Buenos Aires Province, Argentina: a review. Quaternary Science Reviews 14(3):223–54.Google Scholar
Aguirre, ML, Urrutia, MI. 2002. Morphological variability of Littoridina australis (d'Orbigny, 1835) (Hydrobiidae) in the Bonaerensian marine Holocene (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 183(1–2):123.Google Scholar
Albero, MC, Angiolini, FE, Piana, EL. 1986. Discordant ages related to reservoir effect of associated archaeologic remains from the Tunel Site, Beagle Channel, Argentine Republic. Radiocarbon 28(2A):748–53.CrossRefGoogle Scholar
Angulo, RJ, de Souza, MC, Reimer, PJ, Sasaoka, SK. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47(1):6773.Google Scholar
Barnosky, CW. 1989. Postglacial vegetation and climate in the northwestern Great Plains of Montana. Quaternary Research 31(1):5773.Google Scholar
Bayón, C, Politis, G. 1996. Estado actual de las investigaciones en el sitio Monte Hermoso 1 (Prov. de Buenos Aires). Arqueología 6:83115. In Spanish.Google Scholar
Bayón, C, Politis, G. 1998. Las huellas del pasado: pisadas humanas prehistóricas en la costa pampeana. Ciencia Hoy 8(48):1220. In Spanish.Google Scholar
Beer, S, Bjork, M, Hellblom, F, Axelsson, L. 2002. Inorganic carbon utilization in marine angiosperms (sea-grasses). Functional Plant Biology 29(3):349–54.Google Scholar
Bennett, KD. 2006. Psimpoll 4.25: C program for plotting pollen diagrams and analysing pollen data [software]. Available online from Uppsala University, Department of Earth Sciences, Paleobiology. URL: http://www.kv.geo.uu.se/psimpoll.html.Google Scholar
Berglund, BE. 1971. Littorina transgressions in Blekinge, south Sweden—a preliminary survey. Geologiska Föreningens i Stockholm Förhandlingar 93:625–52.CrossRefGoogle Scholar
Bertels, A, Martínez, DE. 1990. Quaternary ostracods of continental and transitional littoral-shallow marine environments. Courier Forschungsinstitut Senckenberg 123:141–59.Google Scholar
Björck, S, Wohlfarth, B. 2001. 14C chronostratigraphic techniques in paleolimnology. In: Last, WM, Smol, JP, editors. Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Dordrecht, the Netherlands: Kluwer Academic Publishers. p 205–45.Google Scholar
Björck, S, Hjort, C, Ingólfsson, O, Skog, G. 1991. Radiocarbon dates from the Antarctic Peninsula region—problems and potential. Quaternary Proceedings 1:5565.Google Scholar
Björck, S, Bennike, O, Possnert, G, Wohlfarth, B, Digerfeldt, G. 1998. A high-resolution 14C dated sediment sequence from southwest Sweden: age comparisons between different components of the sediment. Journal of Quaternary Science 13:85–9.Google Scholar
Bonadonna, FP, Leone, G, Zanchetta, G. 1999. Stable isotope analyses on the last 30 ka molluscan fauna from Pampa grassland, Bonaerense region, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 153(1–4):289308.CrossRefGoogle Scholar
Brennan, R, Quade, J. 1997. Reliable Late-Pleistocene stratigraphic ages and shorter groundwater travel times from 14C in fossil snails from the southern Great Basin. Quaternary Research 47(3):329–36.CrossRefGoogle Scholar
Cabrera, AL. 1941. Las comunidades vegetales de las dunas costaneras de la Provincia de Buenos Aires. Dirección de Agricultura Ganadería e Industrias 1:144. In Spanish.Google Scholar
Cabrera, AL. 1994. Regiones fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Ganadería 2:185. In Spanish.Google Scholar
Cazzaniga, NJ. 1982. Notas sobre hidróbidos argentinos. 5. Conquiliometría de Littoridina parchappii (D'Orbigny, 1835) (Gastropoda Rissoidea) referida a su ciclo de vida en poblaciones australes. Iheringia Série Zoológica 61:97118. In Spanish.Google Scholar
Cordero, RR, Panarello, H, Lanzelotti, S, Dubois, CMF. 2003. Radiocarbon age offsets between living organisms from the marine and continental reservoir in coastal localities of Patagonia (Argentina). Radiocarbon 45(1):915.Google Scholar
Costa, CSB, Seeliger, U. 1989. Vertical distribution and resource allocation of Ruppia maritima L. in a southern Brazilian estuary. Aquatic Botany 33(1–2):123–9.Google Scholar
De Francesco, CG, Zárate, MA. 1999. Taphonomic analysis of Littoridina Souleyet, 1852 (Gastropoda: Hydrobiidae) in Holocene sections of the Quequen Grande River (Buenos Aires Province): paleobiological and paleoenvironmental significance. Ameghiniana 36:297310.Google Scholar
De Francesco, CG, Isla, FI. 2004. Reproductive period and growth rate of the freshwater snail Heleobia parchappii (d'Orbigny, 1835) (Gastropoda: Rissooidea) in a shallow brackish habitat (Buenos Aires Province, Argentina). Malacologia 45(2):443–50.Google Scholar
Dumond, DE, Griffin, DG. 2002. Measurements of the marine reservoir effect on radiocarbon ages in the eastern Bering Sea. Arctic 55(1):7786.Google Scholar
Eastoe, CJ, Fish, S, Fish, P, Gaspar, MD, Long, A. 2002. Reservoir corrections for marine samples from the South Atlantic coast, Santa Catarina State, Brazil. Radiocarbon 44(1):145–8.Google Scholar
Erlandson, JM, Kennett, DJ, Ingram, BL, Guthrie, DA, Morris, DP, Tveskov, MA, West, GJ, Walker, PL. 1996. An archaeological and paleontological chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38(2):355–73.Google Scholar
Espinosa, M, De Francesco, C, Isla, F. 2003. Paleoenvironmental reconstruction of Holocene coastal deposits from the southeastern Buenos Aires Province, Argentina. Journal of Paleolimnology 29(1):4960.Google Scholar
Fallu, M-A, Pienitz, R, Walker, IR, Overpeck, J. 2004. AMS 14C dating of tundra lake sediments using chironomid head capsules. Journal of Paleolimnology 31(1):1122.Google Scholar
Figini, AJ, Rabassa, J, Tonni, EP, Huarte, RA, Gómez, GJ, Carbonari, JE, Zubiaga, AC. 1985. Datación radiocarbónica de gasterópodos terrestres en sedimentos del Pleistoceno superior y Holoceno del valle del Río Sauce Grande, Pcia. de Buenos Aires. I Jornadas Geológicas Bonaerenses 1:809–24. In Spanish.Google Scholar
Figini, AJ, Fidalgo, F, Huarte, R, Carbonari, JE, Gentile, R. 1995. Cronología radiocarbónica de los sedimentos de la Fm Luján en Arroyo Tapalqué, Provincia de Buenos Aires. IV Jornadas Geológicas y Geofísicas Bonaerenses 1:119–26. In Spanish.Google Scholar
Flegenheimer, N, Zárate, M. 1993. The archaeological record in Pampean loess deposits. Quaternary International 17:95100.Google Scholar
Fontana, SL. 2004. Present and past coastal dune environments of southwest Buenos Aires Province, Argentina. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 940:138.Google Scholar
Fontana, SL. 2005a. Holocene vegetation history and palaeoenvironmental conditions on the temperate Atlantic coast of Argentina, as inferred from multi-proxy lacustrine records. Journal of Paleolimnology 34(4):445–69.Google Scholar
Fontana, SL. 2005b. Coastal dune vegetation and pollen representation in south Buenos Aires Province, Argentina. Journal of Bio geography 32(4):719–35.Google Scholar
Fontugne, M, Carré, M, Bentaleb, I, Julien, M, Lavallée, D. 2004. Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene. Radiocarbon 46(2):531–7.Google Scholar
Gaillard, C, Castellanos, ZA. 1976. Molusca gasteropoda: hydrobiidae. In: Ringuelet, RA, editor. Fauna de Agua Dulce de la República Argentina 15:140.Google Scholar
Geyh, M, Schotterer, U, Grosjean, M. 1998. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40(2):921–31.Google Scholar
Geyh, MA, Grosjean, M, Nuñez, L, Schotterer, U. 1999. Radiocarbon reservoir effect and the timing of the late-Glacial/early Holocene humid phase in the Atacama Desert (northern Chile). Quaternary Research 52(2):143–53.Google Scholar
Golfieri, G, Ferrero, L, Zárate, M. 1998. Tafonomía y paleoecología de Tagelus plebeius (Lightfoot, 1786) (Mollusca, Bivalvia) en sedimentos holocenos del río Quequén Grande, provincia de Buenos Aires. Ameghiniana 35:255–64. In Spanish.Google Scholar
Goodfriend, GA. 1987. Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29(2):159–67.Google Scholar
Goodfriend, GA, Hood, DG. 1983. Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25(3):810–30.CrossRefGoogle Scholar
Goodfriend, GA, Stipp, JJ. 1983. Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11(10):575–7.Google Scholar
Grosjean, M, van Leeuwen, JFN, van der Knaap, WO, Geyh, MA, Ammann, B, Tanner, W, Messerli, B, Núñez, LA, Valero-Garcés, BL, Veit, H. 2001. A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Global and Planetary Change 28(1–4):3551.Google Scholar
Hedenström, A, Possnert, G. 2001. Reservoir ages in Baltic Sea sediment—a case study of an isolation sequence from the Litorina Sea stage. Quaternary Science Reviews 20(18):1779–85.Google Scholar
Hutchinson, I, James, TS, Reimer, PJ, Bornhold, BD, Clague, JJ. 2004. Marine and limnic radiocarbon reservoir corrections for studies of late- and postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61(2):193203.Google Scholar
Jobbágy, EG, Jackson, RB. 2003. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64(2):205–29.CrossRefGoogle Scholar
Johnson, E, Politis, G, Gutierrez, M. 2000. Early Holocene bone technology at the La Olla 1 site, Atlantic coast of the Argentine Pampas. Journal of Archaeological Science 27(6):463–77.Google Scholar
Kantrud, HA. 1991. Wigeongrass (Ruppia maritima L.): a literature review. US Fish and Wildlife Service - Fish and Wildlife Research 10. 58 p.Google Scholar
Kilian, MR, van der Plicht, J, van Geel, B, Goslar, T. 2002. Problematic 14C-AMS dates of pollen concentrates from Lake Gościąż (Poland). Quaternary International 88(1):21–6.Google Scholar
MacDonald, GM, Beukens, RP, Kieser, WE. 1991. Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72(3):1150–5.Google Scholar
Markgraf, V, Bradbury, JP, Schwalb, A, Burns, SJ, Stern, C, Ariztegui, D, Gilli, A, Anselmetti, FS, Stine, S, Maidana, N. 2003. Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. The Holocene 13(4):581–91.Google Scholar
McCarraher, DB. 1977. Nebraska's Sandhills Lakes. Lincoln, Nebraska, USA: Nebraska Game and Parks Commission, Federal Aid in Sport Fish Restoration, Project F54-R, Completion Report. 67 p.Google Scholar
McCormac, G, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):1087–92.Google Scholar
Melles, M, Verkulich, SR, Hermichen, W-D. 1994. Radiocarbon dating of lacustrine and marine sediments from the Bunger Hills, East Antarctica. Antarctic Science 6(3):375–8.Google Scholar
Nadal de Masi, MA. 2001. Pescadores coletores da Costa Sul do Brasil. Pesquisas, Antropologia 57:1136. In Portuguese.Google Scholar
Olsson, IU. 1980. Content of 14C in marine mammals from northern Europe. Radiocarbon 22(3):662–75.Google Scholar
Olsson, IU. 1983. Dating non-terrestrial materials. In: Hackens, T, Mook, WG, Waterbolk, HT, editors. Proceedings of the 1st International Symposium 14 C and Archaeology. Groningen, the Netherlands: PACT 8. p 277–93.Google Scholar
Olsson, IU. 1986. Radiometric dating. In: Berglund, BE, editor. Handbook of Holocene Palaeoecology and Palaeohydrology. New York: John Wiley & Sons. p 273312.Google Scholar
Olsson, IU, Kaup, E. 2001. The varying radiocarbon activity of some recent submerged Estonian plants grown in the early 1990s. Radiocarbon 43(2B):809–20.Google Scholar
Olsson, IU, El-Gammal, S, Göksu, Y. 1969. Uppsala natural radiocarbon measurements IX. Radiocarbon 11(2):515–44.Google Scholar
Olsson, IU, El-Daoushy, F, Vasari, Y. 1998. Säynäjälampi and the difficulties inherent in the dating of sediments in a hard-water lake. Hydrobiologia 103(1):514.Google Scholar
Pazos, MS, Mestelan, SA. 2002. Variability of depth to tosca in Udolls and soil classification, Buenos Aires province, Argentina. Soil Science Society of America Journal 66:1256–64.Google Scholar
Pigati, JS, Quade, J, Shahanan, TM, Haynes, CV Jr. 2004. Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 204(1–2):3345.Google Scholar
Politis, GG, Bayón, C. 1995. Early Holocene human foot prints and sea mammals in the tidal zone of the Argentinean seashore. Past 20:56.Google Scholar
Prieto, AR. 1996. Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quaternary Research 45(1):7388.Google Scholar
Prieto, AR, Blasi, AM, De Francesco, CG, Fernández, C. 2004. Environmental history since 11,000 14C yr B.P. of the northeastern Pampas, Argentina, from alluvial sequences of the Luján River. Quaternary Research 62(2):146–61.Google Scholar
Quattrocchio, ME, Borromei, AM, Grill, SC. 1995. Cambios vegetacionales y fluctuaciones paleoclimáticas durante el Pleistoceno tardío–Holoceno en el sudoeste de la provincia de Buenos Aires (Argentina). VI Congreso Argentino de Paleontología y Bioestratigrafía. p 221–9. In Spanish.Google Scholar
Reimer, PJ, Reimer, RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43(2A):461–3.Google Scholar
Sand-Jensen, K, Gordon, DM. 1984. Differential ability of marine and freshwater macrophytes to utilize HCO3 and CO2 . Marine Biology 80(3):247–53.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stutz, S, Prieto, AR, Isla, FI. 2002. Historia de la vegetación del Holoceno de la laguna Hinojales, sudeste de la provincia de Buenos Aires, Argentina. Ameghinina 39:8594. In Spanish.Google Scholar
Stutz, S, Prieto, AR, Isla, FI. 2006. Holocene evolution of the Mar Chiquita coastal lagoon area (Argentina) indicated by pollen analysis. Journal of Quaternary Science 21(1):1728.Google Scholar
Teruggi, M. 1957. The nature and origin of Argentine loess. Journal of Sedimentary Petrology 27:322–32.Google Scholar
Tonni, EP, Cione, AL, Figini, AJ. 1999. Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 147(3–4):257–81.Google Scholar
Tonni, EP, Huarte, RA, Carbonari, JE, Figini, AJ. 2003. New radiocarbon chronology for the Guerrero Member of the Luján Formation (Buenos Aires, Argentina): palaeoclimatic significance. Quaternary International 109–110:45–8.Google Scholar
Weyrauch, WK. 1963. Cuatro nuevas especies de Hydrobiidae de Argentina y Perú (Gastropoda, Prosobranchia). Acta Zoológica Lilloana 19:243–59. In Spanish.Google Scholar
Wohlfarth, B, Skog, G, Possnert, G, Holmquist, B. 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science 13(2):137–45.Google Scholar
Yoneda, M, Tanaka, A, Shibata, Y, Morita, M, Uzawa, K, Hirota, M, Uchida, M. 2002. Radiocarbon marine reservoir effect in human remains from the Kitakogane site, Hokkaido, Japan. Journal of Archaeological Science 29(5):529–36.Google Scholar
Yu, S-Y, Andrén, E, Barnekow, L, Berglund, B, Sandgren, P. 2003. Holocene palaeoecology and shoreline displacement on the Biskopsmåla Peninsula, southeastern Sweden. Boreas 32(4):578–89.Google Scholar
Yu, S-Y, Berglund, BE, Sandgren, P, Fritz, SC. 2005. Holocene palaeoecology along the Blekinge coast, SE Sweden, and implications for climate and sea-level changes. Holocene 15(2):278–92.Google Scholar
Zárate, M. 2003. Loess of southern South America. Quaternary Science Reviews 22(18–19):19872006.Google Scholar
Zárate, M, Blasi, A. 1991. Late Pleistocene and Holocene loess deposits of the southeastern Buenos Aires Province, Argentina. Geojournal 24:211–20.Google Scholar
Zárate, M, Blasi, A. 1993. Late Pleistocene-Holocene eolian deposits of the southern Buenos Aires Province, Argentina: a preliminary model. Quaternary International 17:1520.Google Scholar