Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T00:45:35.493Z Has data issue: false hasContentIssue false

Radiocarbon Concentrations of Wood Ash Calcite: Potential for Dating

Published online by Cambridge University Press:  18 July 2016

Lior Regev
Affiliation:
Department of Structural Biology and the Kimmel Center for Archaeological Science, Weizmann Institute of Science, Rehovot 76100, Israel.
Eileen Eckmeier
Affiliation:
Radiocarbon and Cosmogenic Isotopes Laboratory, Kimmel Center for Archaeological Science, Weizmann Institute of Science, 76100 Rehovot, Israel. INRES – Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany.
Eugenia Mintz
Affiliation:
Radiocarbon and Cosmogenic Isotopes Laboratory, Kimmel Center for Archaeological Science, Weizmann Institute of Science, 76100 Rehovot, Israel.
Steve Weiner
Affiliation:
Department of Structural Biology and the Kimmel Center for Archaeological Science, Weizmann Institute of Science, Rehovot 76100, Israel.
Elisabetta Boaretto*
Affiliation:
Radiocarbon and Cosmogenic Isotopes Laboratory, Kimmel Center for Archaeological Science, Weizmann Institute of Science, 76100 Rehovot, Israel. Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat-Gan 52900, Israel.
*
Corresponding author. Email: elisabetta.boaretto@weizmann.ac.il.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ash is formed when plant calcium oxalate crystals (CaC2O4) decompose to form calcite (CaCO3). We found that ash does retain the original calcium oxalate radiocarbon concentration, but in addition, there is another minor 14C source. This is shown by the presence of a consistent small shift in the pMC and δ13C levels when comparing cellulose and ash from modern and archaeological woods. Possible mechanisms for 14C exchange during combustion or due to diagenesis are considered in order to define parameters for identifying better-preserved wood ash samples.

Type
Methods, Applications, and Developments
Copyright
Copyright © 2011 The Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Bar-Yosef, O. 1991. The archaeology of the Natufian layer at Hayonim Cave. In: Bar-Yosef, O, Valla, FR, editors. The Natufian Culture in the Levant. Ann Arbor: International Monographs in Prehistory. p 8193.Google Scholar
Bar-Yosef, O, Belfer-Cohen, A. 1999. Encoding information: unique Natufian objects from Hayonim Cave, western Galilee, Israel. Antiquity 73(280):402–10.Google Scholar
Bar-Yosef, O. 2002. Chapter 5: Natufian - a complex society of foragers. In: Fitzhugh, B, Habu, J, editors. Beyond Foraging and Collecting: Evolutionary Change in Hunter-Gatherer Settlement Systems. New York: Kluwer Academic. p 91152.Google Scholar
Belfer-Cohen, A. 1991. The Natufian in the Levant. Annual Review of Anthropology 20:167–86.Google Scholar
Bergamaschi, P, Brenninkmeijer, CAM, Hahn, M, Rockmann, T, Scharffe, DH, Crutzen, PJ, Elansky, NF, Belikov, IB, Trivett, NBA, Worthy, DEJ. 1998. Isotope analysis based source identification for atmospheric CH4 and CO sampled across Russia using the Trans-Siberian railroad. Journal of Geophysical Research–Atmospheres 103(D7):8227–35.Google Scholar
Bowman, S. 1990. Radiocarbon Dating. Interpreting the Past. Berkeley: University of California Press. 63 p.Google Scholar
Boynton, RS. 1980. Chemistry and Technology of Lime and Limestone. New York: John Wiley & Sons. 592 p.Google Scholar
Brenninkmeijer, CAM, Manning, MR, Lowe, DC, Wallace, G, Sparks, RJ, Volz-Thomas, A. 1992. Interhemispheric asymmetry in OH abundance inferred from measurements of atmospheric 14CO. Nature 356(6364):50–2.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Chu, V, Regev, L, Weiner, S, Boaretto, E. 2008. Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. Journal of Archaeological Science 35(4):905–11.Google Scholar
Dollimore, D. 1987. The thermal decomposition of oxalates. A review. Thermochimica Acta 117:331–63.Google Scholar
Franceschi, VR, Nakata, PA. 2005. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56:4171.Google Scholar
Frost, RL, Weier, ML. 2004. Thermal treatment of whewellite—a thermal analysis and Raman spectroscopic study. Thermochimica Acta 409(1):7985.CrossRefGoogle Scholar
Gupta, SK, Polach, HA. 1985. Radiocarbon Dating Practices at ANU. Canberra: Radiocarbon Laboratory, Research School of Pacific Studies, Australian National University.Google Scholar
Hatté, C, Hodgins, G, Holliday, VT, Jull, AJT. 2010. Dating human occupation on diatom-phytolith-rich sediment: case studies of Mustang Spring and Lubbock Lake, Texas, USA. Radiocarbon 52(1):1324.Google Scholar
Huaqing, L. 1989. Effect of chemical adsorption of calcium oxalate monohydrate on DTA baseline. Thermochimica Acta 141:151–7.Google Scholar
Koumouzelis, M, Ginter, B, Kozlowski, JK, Pawlikowski, M, Bar-Yosef, O, Albert, RM, Litynska-Zajac, M, Stworzewicz, E, Wojtal, P, Lipecki, G, Tomek, T, Bochenski, ZM, Pazdur, A. 2001. The Early Upper Palaeolithic in Greece: the excavations in Klisoura Cave. Journal of Archaeological Science 28(5):515–39.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, A. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lyons, D, D'Andrea, AC. 2003. Griddles, ovens, and agricultural origins: an ethnoarchaeological study of bread baking in highland Ethiopia. American Anthropologist 105(3):515–30.Google Scholar
Oleary, MH. 1988. Carbon isotopes in photosynthesis. Bioscience 38(5):328–36.Google Scholar
Pachiaudi, C, Marechal, J, Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1986. Isotopic fractionation of carbon during CO2 absorption by mortar. Radiocarbon 28(2A):691–7.CrossRefGoogle Scholar
Pandow, M, Mackay, C, Wolfgang, R. 1960. The reaction of atomic carbon with oxygen: significance for the natural radio-carbon cycle. Journal of Inorganic and Nuclear Chemistry 14(3–4):153–8.Google Scholar
Price, D, Dollimore, D, Fatemi, NS, Whitehead, R. 1980. Mass spectrometric determination of kinetic parameters for solid state decomposition reactions. Part 1. Method; calcium oxalate decomposition. Thermochimica Acta 42(3):323–32.Google Scholar
Raven, JA, Griffiths, H, Glidewell, SM, Preston, T. 1982. The mechanism of oxalate biosynthesis in higherplants - investigations with the stable isotopes 18O and 13C. Proceedings of the Royal Society of London Series B-Biological Sciences 216(1202):87101.Google Scholar
Regev, L, Poduska, KM, Addadi, L, Weiner, S, Boaretto, E. 2010. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. Journal of Archaeological Science 37(12):3022–9.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Rom, W, Brenninkmeijer, CAM, Bräunlich, M, Golser, R, Mandl, M, Kaiser, A, Kutschera, W, Priller, A, Puchegger, S, Röckmann, T, Steier, P. 2000a. A detailed 2-year record of atmospheric 14CO in the temperate northern hemisphere. Nuclear Instruments and Methods in Physics Research B 161–163:780–5.Google Scholar
Rom, W, Brenninkmeijer, CAM, Bronk Ramsey, C, Kutschera, W, Priller, A, Puchegger, S, Röckmann, T, Steier, P. 2000b. Methodological aspects of atmospheric 14CO measurements with AMS. Nuclear Instruments and Methods in Physics Research B 172(1–4):530–6.Google Scholar
Sakugawa, H, Kaplan, IR. 1997. Radio- and stable-isotope measurements of atmospheric carbon monoxide in Los Angeles. Geochemical Journal 31(2):7583.Google Scholar
Santos, GM, Alexandre, A, Coe, HHG, Reyerson, PE, Southon, JR, De Carvalho, CN. 2010. The phytolith 14C puzzle: a tale of background determinations and accuracy tests. Radiocarbon 52(1):113–28.Google Scholar
Schiffer, MB. 1986. Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology. Journal of Archaeological Science 13(1):1330.Google Scholar
Shomer-Ilan, A, Nissenbaum, A, Waisel, Y. 1981. Photosynthetic pathways and the ecological distribution of the Chenopodiaceae in Israel. Oecologia 48(2):244–8.Google Scholar
Smith, BN, Epstein, S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47(3):380–4.Google Scholar
Turnbull, JC, Lehman, SJ, Miller, JB, Sparks, RJ, Southon, JR, Tans, PP. 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research–Atmospheres 112(D11):D11310.Google Scholar
Van Strydonck, M, Dupas, M, Keppens, E. 1989. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 31(3):610–8.Google Scholar
Weiner, S. 2010. Microarchaeology - Beyond the Visible Archaeological Record. New York: Cambridge University Press. 396 p.Google Scholar
Weinstock, B. 1969. Carbon monoxide: residence time in the atmosphere. Science 166(3902):224–5.CrossRefGoogle ScholarPubMed
Zazzo, A, Saliège, J-F, Person, A, Boucher, H. 2009. Radiocarbon dating of calcined bones: Where does the carbon come from? Radiocarbon 51(2):601–11.Google Scholar