Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T05:36:44.017Z Has data issue: false hasContentIssue false

Radiocarbon Dating History: Early Days, Questions, and Problems Met

Published online by Cambridge University Press:  18 July 2016

Ingrid U Olsson*
Affiliation:
Department of Physics and Materials Science, University of Uppsala, Sweden. Email: Ingrid.Olsson@fysik.uu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

W F Libby's new dating method from the 1940s, based on experience in physics and chemistry, opened possibilities to check and revise chronologies built on other principles than radioactive decay. Libby's method initially implied collaboration with archaeologists to demonstrate that it worked but also with physicists to improve the technique to measure low β activities. Chemists, geophysicists, botanists, physiologists, statisticians, and other researchers have contributed to a prosperous interdisciplinary development. Some pitfalls were not recognized from the beginning, although issues such as contamination problems were foreseen by Libby. Pretreatment of samples was discussed very early by de Vries and collaborators, among others. This subject has not yet been abandoned. Closely related to pretreatment is the choice of fraction to be dated and chemicals to be used, especially for accelerator mass spectrometry (AMS) measurements. Calibration against tree rings and comparison with dates obtained using other methods as well as intercomparison projects are partly history but still very actual. The impact by man and climate is also studied since the early days of the method. Also, the carbon cycle has been of great interest. The tools for measurements and statistical analysis have been improved during these first 3 or 4 decades, allowing interpretations not possible earlier. δ13C determinations are mostly very important and useful, but sometimes they have been misleading in discussions of the origin of carbon, especially for human tissues—the metabolism was not yet fully understood. The history and development of the method can only be illustrated by selected examples in a survey like this.

Type
Applications, Developments, and Historical Perspectives
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Andersen, EB. 1936. Eine empfindliche Zählrohranordnung. Zeitschrift für Physik 98:597604. In German.Google Scholar
Anderson, EC, Libby, WF. 1951. World-wide distribution of natural radiocarbon. The Physical Review 81:64–9.CrossRefGoogle Scholar
Bada, JL, Vrolijk, CD, Brown, S, Druffel, ERM, Hedges, REM. 1987. Bomb radiocarbon in metabolically inert tissues from terrestrial and marine mammals. Geophysical Research Letters 14(10):1065–7.CrossRefGoogle Scholar
Bannister, B, Damon, PE. 1973. A dendrochronologically-derived primary standard for radiocarbon dating. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 676–85.Google Scholar
Barker, H, Mackey, CJ. 1959. British Museum natural radiocarbon measurements I. American Journal of Sciences Radiocarbon Supplement 1:81–6.Google Scholar
Bartlett, HH. 1951. Radiocarbon datability of peat, marl, caliche, and archaeological materials. Science 114(2951):55–6.CrossRefGoogle ScholarPubMed
Baxter, MS, Walton, A. 1970. Glasgow University radiocarbon measurements III. Radiocarbon 12(2):496502.CrossRefGoogle Scholar
Baxter, MS, Ergin, M, Walton, A. 1969. Glasgow University radiocarbon measurements I. Radiocarbon 11(1):4352.CrossRefGoogle Scholar
Beer, J, Giertz, V, Möll, M, Oeschger, H, Riesen, T, Strahm, C. 1979. The contribution of the Swiss lake-dwellings to the calibration of radiocarbon dates. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 566–84.Google Scholar
Bella, F, Alessio, M, Fratelli, P. 1968. A determination of the half-life of 14C. Il Nuovo Cimento B 58(1):232–46.Google Scholar
Bender, MM. 1968. Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon 10(2):468–72.CrossRefGoogle Scholar
Bergquist, NO. 1964. Absorption of carbon dioxide by plant roots. Botaniska notiser 117(Fasc.3):249–61.Google Scholar
Bien, GS, Rakestraw, NW, Suess, HE. 1963. Radiocarbon dating of the deep water of the Pacific and Indian oceans. In: Radioactive Dating. Vienna: IAEA. p 159–73.Google Scholar
Birkenmajer, K, Olsson, IU. 1971. Radiocarbon dating of raised marine terraces at Hornsund, Spitsbergen, and the problem of land uplift. Norsk Polarinstitutt Årbok 1969:1743.Google Scholar
Birkenmajer, K, Olsson, IU. 1998. Radiocarbon dating of whale bones from the 17th century whaling sites at Gåshamna, Hornsund, south Spitsbergen. Bulletin of the Polish Academy of Sciences 46(2):109–32.Google Scholar
Bolin, B. 1960. On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12:274–81.Google Scholar
Brenninkmeijer, CAM, Mook, WG. 1979. The effect of electronegative impurities on CO2 proportional counting: an on-line purity test counter. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 185–96.Google Scholar
Broecker, WS, Olson, EA. 1959. Lamont radiocarbon measurements VI. American Journal of Science Radiocarbon Supplement 1:111–32.Google Scholar
Broecker, WS, Olson, EA. 1960. Radiocarbon from nuclear tests, II. Science 132(3429):712–21.CrossRefGoogle ScholarPubMed
Broecker, WS, Olson, EA. 1961. Lamont radiocarbon measurements VIII. Radiocarbon 3:176204.CrossRefGoogle Scholar
Broecker, WS, Schulert, A, Olson, EA. 1959. Bomb carbon-14 in human beings. Science 130(3371):331–2.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.Google Scholar
Bruns, M, Levin, I, Münnich, KO, Hubberten, HW, Fillipakis, S. 1980. Regional sources of volcanic carbon dioxide and their influence on 14C content of present-day plant material. Radiocarbon 22(2):532–6.Google Scholar
Bumsted, MP. 1984. Human variation: δ13C in adult bone collagen and the relation to diet in an isochronous C4 (maize) archaeological population [PhD dissertation]. Los Alamos-10259-T. 188 p.Google Scholar
Burleigh, R. 1973. Bomb combustion of radiocarbon samples. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 110–9.Google Scholar
Burleigh, R, Matthews, K, Leese, M. 1984. Consensus δ13C values. Radiocarbon 26(1):4653.CrossRefGoogle Scholar
Cadogan, G. 1988. Dating of the Santorini eruption (reply). Nature 332(6163):401.Google Scholar
Cain, WF. 1979. 14C in modern American trees. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 495510.Google Scholar
Cain, WF, Suess, HE. 1976. Carbon 14 in tree rings. Journal of Geophysical Research 81(21):3688–94.Google Scholar
Calder, JA, Parker, PL. 1973. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochimica et Cosmochimica Acta 37:133–40.CrossRefGoogle Scholar
Calf, GE. 1978. A procedure for the preparation of benzene from 14C NBS oxalic acid standard. Radiocarbon 20(2):169–70.Google Scholar
Callow, WJ, Baker, MJ, Hassal, GI. 1965. National Physical Laboratory radiocarbon measurements III. Radiocarbon 7:156–61.CrossRefGoogle Scholar
Cato, I. 1985. The definite connection of the Swedish geochronological time scale with the present, and the new date of the zero year in Döviken, northern Sweden. Boreas 14:117–22.CrossRefGoogle Scholar
Cavallo, LM, Mann, WB. 1980. New National Bureau of Standards contemporary carbon-14 standards. Radiocarbon 22(3):962–3.Google Scholar
Chatters, RM, Crosby, JW III, Engstrand, LG. 1969. Fumarole gaseous emanations: their influence on carbon-14 dates. In: Washington State University Technical Extension Service. Circular 32.Google Scholar
Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3:5392.CrossRefGoogle Scholar
Craig, H. 1954. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. Journal of Geology 62(2):115–49.Google Scholar
Craig, H. 1961. Mass-spectrometer analyses of radiocarbon standards. Radiocarbon 3:13.Google Scholar
Currie, LA, Polach, HA. 1980. Exploratory analysis of the international radiocarbon cross-calibration data: consensus values and interlaboratory error. Preliminary note. Radiocarbon 22(3):933–5.Google Scholar
Damon, PE. 1970. Climatic versus magnetic perturbation of the atmospheric C14 reservoir. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 571–93.Google Scholar
Damon, PE, Long, A, Sigalove, JJ. 1963. Arizona radiocarbon dates IV. Radiocarbon 5:283301.Google Scholar
Damon, PE, Haynes, CV, Long, A. 1964. Arizona radiocarbon dates V. Radiocarbon 6:91107.Google Scholar
Damon, PE, Long, A, Grey, DC. 1970. Arizona radiocarbon dates for dendrochronologically dated samples. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 615–8.Google Scholar
Damon, PE, Long, A, Wallick, EI. 1973. Dendrochronologic calibration of the carbon-14 time scale. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 4459.Google Scholar
Damon, PE, Lerman, JC, Long, A. 1978. Temporal fluctuations of atmospheric 14C: causal factors and implications. Annual Review of Earth and Planetary Sciences 6:457–94.Google Scholar
Damon, PE, Burr, G, Cain, WJ, Donahue, DJ. 1992. Anomalous 11-year Δ14C cycle at high latitudes? Radiocarbon 34(2):235–8.Google Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Langway, CC Jr. 1970. Ice cores and paleoclimatology. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 337–51.Google Scholar
Dauchot-Dehon, M, Heylen, J. 1979. Institut Royal du Patrimoine Artistique radiocarbon dates VI. Radiocarbon 21(2):180–5.Google Scholar
Deevey, ES Jr, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The natural C14 contents of materials from hard-water lakes. Proceedings of the National Academy of Sciences of the USA 40(5):285–8.Google Scholar
Deines, P. 1980. The isotopic composition of reduced organic carbon. In: Fritz, P, Fontes, JCh, editors. Handbook of Environmental Isotope Geochemistry. Volume 1. Amsterdam: Elsevier. p 329406.Google Scholar
de Jong, AFM, Mook, WG, Becker, B. 1979. Confirmation of the Suess wiggles: 3200–3700 BC. Nature 280(5717):48–9.CrossRefGoogle Scholar
de Vries, H. 1956a. Purification of CO2 for use in a proportional counter for 14C age measurements. Applied Scientific Research B 5:387400.CrossRefGoogle Scholar
de Vries, H. 1956b. The contribution of neutrons to the background of counters used for 14C age measurements. Nuclear Physics 1:477–9.Google Scholar
de Vries, H. 1957. The removal of radon from CO2 for use in 14C age measurements. Applied Scientific Research B 6:461–70.Google Scholar
de Vries, H. 1958. Variation in concentration of radiocarbon with time and location on Earth. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Series B 61(2):94102.Google Scholar
de Vries, H, Barendsen, GW. 1953. Radiocarbon dating by a proportional counter filled with carbon dioxide. Physica 19:9871003.Google Scholar
de Vries, H, Barendsen, GW. 1954. Measurements of age by the carbon-14 technique. Nature 174(4442):1138–41.Google Scholar
de Vries, H, Waterbolk, HT. 1958. Groningen radiocarbon dates III. Science 128:1550–6.CrossRefGoogle ScholarPubMed
de Vries, AE, Haring, A, Slots, W. 1956. Separation of 14C/16O and 12C-18O by thermal diffusion. Physica 22:247–8.Google Scholar
Donner, JJ, Jungner, H. 1980. Radiocarbon ages of shells in Holocene marine deposits. Radiocarbon 22(2):556–61.Google Scholar
Donner, JJ, Jungner, H, Vasari, Y. 1971. The hard-water effect on radiocarbon measurements of samples from Säynäjälampi, north-east Finland. Commentationes Physico-Mathematicae 41:307–10.Google Scholar
Dörr, H, Münnich, KO. 1986. Annual variations of the 14C content of soil CO2 . Radiocarbon 28(2A):338–45.Google Scholar
Dresser, Q. 1985. University College Cardiff radiocarbon dates I. Radiocarbon 27(2B):338–85.Google Scholar
Druffel, EM, Mok, HYI. 1983. Time history of human gallstones: application of the post-bomb radiocarbon signal. Radiocarbon 25(2):629–36.Google Scholar
Editorial. 1972. Antiquity 46(184):265.Google Scholar
El-Daoushy, MFAF, Olsson, IU, Oro, FH. 1978. The EDTA and HCl methods of pre-treating bones. Geologiska Föreningens i Stockholm Förhandlingar 100:213–9.Google Scholar
Erlenkeuser, H. 1979. A thermal diffusion plant for radiocarbon isotope enrichment from natural samples. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 216–37.Google Scholar
Evin, J, Marechal, J, Marien, G. 1983. Lyon natural radiocarbon measurements IX. Radiocarbon 25(1):59128.Google Scholar
Ferguson, CW. 1970. Dendrochronology of bristlecone pine, Pinus aristata. Establishment of a 7484-year chronology in the White Mountains of eastern-central California, U.S.A. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 237–59.Google Scholar
Feyling-Hanssen, RW, Olsson, I. 1959–60. Five radiocarbon datings of Post Glacial shorelines in Central Spitsbergen. Norsk Geografisk Tidsskrift 17(1–4):122–31.Google Scholar
Folk, RL, Valastro, S Jr. 1979. Dating of lime mortar by 14C. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 721–32.Google Scholar
Freundlich, JC, Kuper, R, Breunig, P, Bertram, H-G. 1989. Radiocarbon dating of ostrich eggshells. Radiocarbon 31(3):1030–4.Google Scholar
Fromm, E. 1970. An estimation of errors in the Swedish varve chronology. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 163–72.Google Scholar
Geyh, MA. 1967. Experience gathered in the construction of low-level counters. In: Radioactive Dating and Methods of Low-Level Counting. Vienna: IAEA. p 575–91.Google Scholar
Geyh, MA. 1973. A comparison: proportional counter and liquid scintillation spectrometer for radiocarbon dating. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 189201.Google Scholar
Geyh, MA. 1979. 14C routine dating of marine sediments. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 480–91.Google Scholar
Geyh, MA, Merkt, J, Müller, H. 1970. 14C-Datierung limnischer Sedimente und die Eichung der 14C-Zeitskala. Naturwissenschaften 57:564–7. In German.Google Scholar
Geyh, MA, Merkt, J, Müller, H. 1971. Sediment-, Pollen-, und Isotopenanalysen an jahreszeitlich geschichteten Ablagerungen im zentralen Teil des Schleinsees. Archiv Hydrobiologie 69:366–99. In German.Google Scholar
Geyh, MA, Krumbein, WE, Kudrass, H-R. 1974. Unreliable 14C dating of long-stored deep-sea sediments due to bacterial activity. Marine Geology 17:M4550.Google Scholar
Gillespie, R, Hedges, REM. 1983. Sample chemistry for the Oxford High Energy Mass Spectrometer. Radiocarbon 25(2):771–4.Google Scholar
Glad, T, Nydal, R. 1982. Radial transport of 14C in Norwegian pine. In: Proceedings of the Second Nordic Conference on the Application of Scientific Methods in Archaeology. PACT 7(1):4552.Google Scholar
Godwin, H. 1951. Comments on radiocarbon dating for samples from the British Isles. American Journal of Science 249:301–7.CrossRefGoogle Scholar
Godwin, H. 1969. The value of plant materials for radiocarbon dating. American Journal of Botany 56(7):723–31.Google Scholar
Godwin, H, Willis, EH. 1964. Cambridge University natural radiocarbon measurements VI. Radiocarbon 6:116–37.Google Scholar
Grey, DC, Damon, PE, Haynes, CV, Long, A. 1969. Carbon-isotope fractionation during wet oxidation of oxalic acid. Radiocarbon 11(1):12.CrossRefGoogle Scholar
Grootes, PM. 1977. Thermal diffusion isotopic enrichment and radiocarbon dating beyond 50,000 years BP [PhD dissertation]. University of Groningen, the Netherlands. 221 p.Google Scholar
Grootes, PM, Stuiver, M. 1979. The Quaternary Isotope Laboratory thermal diffusion enrichment system: description and performance. Radiocarbon 21(2):139–64.Google Scholar
Grootes, PM, Mook, WG, Vogel, JC, de Vries, AE, Haring, A, Kistemaker, J. 1975. Enrichment of radiocarbon for dating samples up to 75,000 years. Zeitschrift für Naturforschung 30a:114.Google Scholar
Gulliksen, S, Nydal, R. 1979. Further improvement of counter background and shielding. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 176–84.Google Scholar
Gurfinkel, DM. 1987. Comparative study of the radiocarbon dating of different bone collagen preparations. Radiocarbon 29(1):4552.Google Scholar
Håkansson, S. 1979. Radiocarbon activity in submerged plants from various south Swedish lakes. In Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 433–43.Google Scholar
Hammer, CU, Clausen, HB, Dansgaard, W. 1980. Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288(5788):230–5.Google Scholar
Hammer, CU, Clausen, HB, Tauber, H. 1986. Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale. Radiocarbon 28(2A):284–91.Google Scholar
Hammer, CU, Clausen, HB, Friedrich, WL, Tauber, H. 1987. The Minoan eruption of Santorini in Greece dated to 1645 BC? Nature 328(6130):517–9.Google Scholar
Hammer, CU, Clausen, HB, Friedrich, WL, Tauber, H. 1988. Dating of the Santorini eruption (reply). Nature 332(6163):401.Google Scholar
Harkness, DD, Walton, A. 1972. Further investigations of the transfer of bomb 14C to man. Nature 240(5379):302–3.CrossRefGoogle Scholar
Haynes, CV Jr. 1966. Radiocarbon samples: chemical removal of plant contaminants. Science 151(3716):1391–2.Google Scholar
Haynes, CV Jr, Damon, PE, Grey, DC. 1966. Arizona radiocarbon dates VI. Radiocarbon 8:121.CrossRefGoogle Scholar
Heier-Nielsen, S, Heinemeier, J, Nielsen, HL, Rud, N. 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3):875–82.CrossRefGoogle Scholar
Heikkinen, A, Äikää, O. 1977. Geological Survey of Finland radiocarbon measurements VII. Radiocarbon 19(2):263–79.CrossRefGoogle Scholar
Heikkinen, A, Koivisto, A-K, Aikää, O. 1974. Geological Survey of Finland radiocarbon measurements VI. Radiocarbon 16(2):252–68.Google Scholar
Hörnsten, Å, Olsson, IU. 1964. En C14-datering av glaciallera från Lugnvik, Ångermanland. Geologiska Föreningens i Stockholm Förhandlingar 86:206–10.Google Scholar
Hughes, MK. 1988. Ice-layer dating of eruption at Santorini. Nature 335(6187):211–2.Google Scholar
International Study Group. 1982. An inter-laboratory comparison of radiocarbon measurements in tree rings. Nature 298(5875):619–23.Google Scholar
Johnson, F. 1959. A bibliography of radiocarbon dating. American Journal of Science Radiocarbon Supplement 1:199214.Google Scholar
Kigoshi, K, Hasegawa, H. 1966. Secular variation of atmospheric radiocarbon concentration and its dependence on geomagnetism. Journal of Geophysical Research 71(4):1065–71.Google Scholar
Kim, SM. 1970. Wet oxidation of oxalic acid used in radiocarbon dating and 14C fractionation during the oxidation. Doehan Hwahak Hwejee (Journal of the Korean Chemical Society) 14(1):4950.Google Scholar
Klein, J, Lerman, JC, Damon, PE, Ralph, EK. 1982. Calibration of radiocarbon dates: tables based on the consensus data of the workshop on calibrating the radiocarbon time scale. Radiocarbon 24(2):103–50.CrossRefGoogle Scholar
Kuc, T. 1986. Carbon isotopes in atmospheric CO2 of the Kraków region: a two-year record. Radiocarbon 28(2A):649–54.Google Scholar
Kuc, T. 1987. 14C traced in Kraków after the Chernobyl accident. Radiocarbon 29(3):319–22.Google Scholar
LaMarche, VC Jr, Hirschboeck, KK. 1984. Frost rings in trees as records of major volcanic eruptions. Nature 307(5947):121–6.Google Scholar
Leavitt, SW, Long, A. 1982. Evidence for 13C/12C fractionation between tree leaves and wood. Nature 298(5876):742–4.Google Scholar
Lerman, JC. 1973. Carbon 14 dating: origin and correction of isotope fractionation errors in terrestrial living matter. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 612–24.Google Scholar
Lerman, JC, Mook, WG, Vogel, JC. 1970. C14 in tree rings from different localities. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 275301.Google Scholar
Levi, H. 1955. Bibliography of radiocarbon dating. Quaternaria 2:257–63.Google Scholar
Levi, H. 1957. Bibliography of radiocarbon dating. Quaternaria 4:205–10.Google Scholar
Levin, I, Münnich, KO, Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. Radiocarbon 22(2):379–91.Google Scholar
Libby, WF. 1955. Radiocarbon Dating. 2nd edition. Chicago: University of Chicago Press. 175 p.Google Scholar
Libby, WF. 1970. Ruminations on radiocarbon dating. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 629–40.Google Scholar
Libby, LM, Libby, WF. 1973. Vulcanism and radiocarbon dates. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 86–9.Google Scholar
Lingenfelter, RE, Ramaty, R. 1970. Astrophysical and geophysical variations in C14 production. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 513–37.Google Scholar
Long, A, Arnold, LD, Damon, PE, Ferguson, CW, Lerman, JC, Wilson, AT. 1979. Radial translocation of carbon in Bristlecone pine. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 532–7.Google Scholar
Long, A, Hendershott, RB, Martin, PS. 1983. Radiocarbon dating of fossil eggshell. Radiocarbon 25(2):533–40.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.Google Scholar
Lowdon, JA. 1969. Isotope fractionation in corn. Radiocarbon 11(2):391–3.Google Scholar
Lowdon, JA. 1970. Carbon-isotope fractionation during dry combustion of oxalic acid. Radiocarbon 12(2):347–9.Google Scholar
Lyon, TDB, Baxter, MS. 1978. Stable carbon isotopes in human tissues. Nature 273(5665):750–1.Google Scholar
Mangerud, J, Gulliksen, S. 1975. Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada. Quaternary Research 5:263–73.Google Scholar
Mann, WB. 1983. An international reference material for radiocarbon dating. Radiocarbon 25(2):519–27.Google Scholar
Mann, WB, Marlow, WF, Hughes, EE. 1961. The half-life of carbon-14. International Journal of Applied Radiation and Isotopes 11(1):5767.Google Scholar
Manning, SW. 1988. Dating of the Santorini eruption. Nature 332(6163):401.Google Scholar
McCartney, M, Baxter, MS, McKay, K, Scott, EM. 1986. Global and local effects of 14C discharges from the nuclear fuel cycle. Radiocarbon 28(2A):634–43.Google Scholar
Michael, HN, Ralph, EK. 1970. Correction factors applied to Egyptian radiocarbon dates from the era before Christ. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 109–20.Google Scholar
Michael, HN, Ralph, EK. 1973. Discussion of radiocarbon dates obtained from precisely dated Sequoia and Bristlecone pine samples. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 2743.Google Scholar
Mook, WG. 1983. 14C calibration curves depending on sample time-width. In: Hackens, T, Mook, WG, Waterbolk, HT, editors. Proceedings of 14C and Archaeology, Groningen, the Netherlands 1981. PACT 8:517–25.Google Scholar
Münnich, KO. 1957. Heidelberg natural radiocarbon measurements I. Science 126(3266):194–9.Google Scholar
Münnich, KO, Vogel, JC. 1963. Investigation of meridional transport in the troposphere by means of carbon-14 measurements. In: Radioactive Dating. Vienna: IAEA. p 189–97.Google Scholar
Nehmi, VA. 1980. Isotopic fractionation of NBS oxalic 14C standard and its effect on calculated age of materials. Radiocarbon 22(2):501–4.Google Scholar
Neustupný, E. 1970. The accuracy of radiocarbon dating. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 2334.Google Scholar
Noakes, JE, Kim, SM, Stipp, JJ. 1966. Chemical and counting advances in liquid scintillation age dating. In: Chatters, RM, editor. Proceedings of the Sixth International Conference Radiocarbon and Tritium Dating. Pullman, Washington, 7–11 June 1965 (Conf. 650652). p 6892.Google Scholar
Nydal, R. 1959. Trondheim natural radiocarbon measurements I. American Journal of Science Radiocarbon Supplement 1:7680.Google Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6):3621–42.Google Scholar
Nydal, R, Lövseth, K, Syrstad, O. 1971. Bomb 14C in the human population. Nature 232(5310):418–21.Google Scholar
Oana, S, Deevey, ES. 1960. Carbon 13 in lake waters, and its possible bearing on paleolimnology. American Journal of Science, Bradley Volume 258A:253–72.Google Scholar
Oeschger, H, Siegenthaler, U. 1979. Prognosis for the expected CO2 increase due to fossil fuel combustion. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 633–42.Google Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelman, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–92.Google Scholar
Oeschger, H, Lehmann, B, Loosli, HH, Moell, M, Neftel, A, Schotterer, U, Zumbrunn, R. 1979. Recent progress in low level counting and other isotope detection methods. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 147–57.Google Scholar
Oeschger, H, Beer, J, Loosli, HH, Schotterer, U. 1981. Low-level counting systems in deep underground laboratories. In: Methods of Low-Level Counting and Spectrometry. Vienna: IAEA. p 459–74.Google Scholar
Olson, EA, Broecker, WS. 1959. Lamont natural radiocarbon measurements V. American Journal of Science Radiocarbon Supplement 1:128.Google Scholar
Olsson, I. 1959. Uppsala natural radiocarbon measurements I. American Journal of Science Radiocarbon Supplement 1:87102.Google Scholar
Olsson, I. 1960. Uppsala natural radiocarbon measurements II. American Journal of Science Radiocarbon Supplement 2:112–28.Google Scholar
Olsson, IU. 1968. Radiocarbon analyses of lake sediment samples from Bjørnøya. Appendix in: Hyvärinen H. Late-Quaternary sediment cores from Bjørnøya. Geografiska Annaler 50A:246–7.Google Scholar
Olsson, IU, editor. 1970. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons.Google Scholar
Olsson, IU. 1972a. The pretreatment of samples and the interpretation of the results of 14C determinations. Acta Universitatis Oulensis Ser A3, Geologica 1:937.Google Scholar
Olsson, IU. 1972b. The C14 dating of samples for botanical studies of prehistoric agriculture in northern Ångermanland. Early Norrland 1:3541.Google Scholar
Olsson, IU. 1973. The radiocarbon dating of Ivory Coast shell mounds. West African Journal of Archaeology 3:215–20.Google Scholar
Olsson, IU. 1977. Något om val av C14-prov och val av presentationssätt av resultaten. Fornvännen 72:208–12. In Swedish, summary in English.Google Scholar
Olsson, IU. 1979a. The importance of the pretreatment of wood and charcoal samples. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 135–46.Google Scholar
Olsson, IU. 1979b. The radiocarbon contents of various reservoirs. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 613–8.Google Scholar
Olsson, IU. 1980a. 14C in extractives from wood. Radiocarbon 22(2):515–24.Google Scholar
Olsson, IU. 1980b. Content of 14C in marine mammals from northern Europe. Radiocarbon 22(3):662–75.Google Scholar
Olsson, IU. 1983. Dating non-terrestrial materials. In: Hackens, T, Mook, WG, Waterbolk, HT, editors. Proceedings of 14C and Archaeology, Groningen, the Netherlands 1981. PACT 8:277–94.Google Scholar
Olsson, IU. 1986a. 13C-variationer — deras orsak, storlek och användbarhet. Fornvännen 81:114–20. In Swedish, summary in English.Google Scholar
Olsson, IU. 1986b. A study of errors in 14C dates of peat and sediment. Radiocarbon 28(2A):429–35.Google Scholar
Olsson, IU. 1988. Low-level counting using gas-filled counters as applied to 14C dating with emphasis on reliability. In: Garcia-Leon, M, Madurga, G, editors. Low-Level Measurements and Their Applications to Environmental Radioactivity. Proceedings First International Summer School. La Rábida, Huelva, Spain, 28 September–9 October 1987. Singapore: World Scientific. p 171223.Google Scholar
Olsson, IU. 1989. Recent 14C activity in the atmosphere, “clean air” and the Chernobyl effect. Radiocarbon 31(3):740–6.Google Scholar
Olsson, IU. 1991a. Quality assessment of 14C dates. Laborativ Arkeologi 5:115–23.Google Scholar
Olsson, IU. 1991b. Accuracy and precision in sediment chronology. Hydrobiologia 214:2534.Google Scholar
Olsson, IU. 1993a. The importance of knowing the origin of samples in 14C dating. In: Hackens, T, editorial group. Sources and Resources. PACT 38:211–22.Google Scholar
Olsson, IU. 1993b. A ten-year record of the different levels of the 14C activities over Sweden and the Arctic. Tellus B 45:479–81.Google Scholar
Olsson, IU. 1997. Kol-14 datering. Metoden och diskussion av speciella problem med isländska prov och redovisning av två serier dateringar av arkeologiskt material. The Ása G. Wright Memorial Lectures IX. In Swedish. 63 p.Google Scholar
Olsson, IU. 1999a. 14C dates and the reservoir effect. In: van der Plicht, J, editor. Proceedings International Workshop on Isotope-Geochemical Research in the Baltic Region, Lohusalu, Estonia, March 14–16 1996 Centre for Isotope Research, Groningen, the Netherlands. p 523.Google Scholar
Olsson, IU. 1999b. Geophysical aspects of problems in interpretations of Icelandic radiocarbon dates of archaeological samples. Norwegian Archaeological Review 32(2):95110.Google Scholar
Olsson, IU. 2000. Further tests of the EDTA treatment of bones. Radiocarbon 42(1):4952.Google Scholar
Olsson, I, Blake, W Jr. 1961–2. Problems of radiocarbon dating of raised beaches, based on experience in Speitsbergen. Norsk Geografisk Tidsskrift 18(1–2):4764.Google Scholar
Olsson, IU, Eriksson, KG. 1965. Remarks on C14 dating of shell material in sea sediments. Progress in Oceanography 3:253–66.Google Scholar
Olsson, IU, Florin, M-B. 1980. Radiocarbon dating of dy and peat in the Getsjö area, Kolmården, Sweden, to determine the rational limit of Picea. Boreas 9(4):289305.Google Scholar
Olsson, IU, Karlén, I. 1963. The half-life of C14 and the problems which are encountered in absolute measurements on β-decaying gases. In: Radioactive Dating. Vienna: IAEA. p 311.Google Scholar
Olsson, IU, Karlén, I. 1965. Uppsala radiocarbon measurements VI. Radiocarbon 7:331–5.Google Scholar
Olsson, IU, Kaup, E. 2001. The varying radiocarbon activity of some recent submerged Estonian plants grown in the early 1990s. Radiocarbon 43(2B):809–20.Google Scholar
Olsson, IU, Kilicci, S. 1964. Uppsala natural radiocarbon measurements IV. Radiocarbon 6:291307.Google Scholar
Olsson, IU, Osadebe, FAN. 1974. Carbon isotope variations and fractionation corrections in 14C dating. Boreas 3:139–46.Google Scholar
Olsson, IU, Possnert, G. 1992. 14C activity in different sections and chemical fractions of oak tree rings, AD 1938–1981. Radiocarbon 34(3):757–67.Google Scholar
Olsson, IU, Stenberg, A. 1967. Very high 14C activity in Abisko, Sweden, during summer 1965. In: Radioactive Dating and Methods of Low-Level Counting. Vienna: IAEA. p 6978.Google Scholar
Olsson, IU, Vasari, Y. 1995. The long-term response of submerged plants in the hard-water lake, Säynäjälampi, to the bomb-radiocarbon injection. In: Robertsson, A-M, Hicks, S, Åkerlund, A, Risberg, J, Hackens, T, editors. Landscapes and Life. PACT 50:377–83.Google Scholar
Olsson, I, Cazeneuve, H, Gustavsson, J, Karlén, I. 1961. Uppsala natural radiocarbon measurements III. Radiocarbon 3:81–5.Google Scholar
Olsson, IU, Karlén, I, Turnbull, AH, Prosser, NJD. 1962. A determination of the half-life of C14 with a proportional counter. Arkiv för Fysik 22:237–55.Google Scholar
Olsson, IU, Göksu, Y, Stenberg, A. 1968. Further investigations of storing and treatment of foraminifera and mollusks for C14-dating Geologiska Föreningens i Stockholm Förhandlingar 90:417–26.Google Scholar
Olsson, IU, El-Gammal, S, Göksu, Y. 1969. Uppsala natural radiocarbon measurements IX. Radiocarbon 11(2):515–44.Google Scholar
Olsson, IU, Klasson, M, Abd-El-Mageed, A. 1972. Uppsala natural radiocarbon measurements XI. Radiocarbon 14(1):247–71.Google Scholar
Olsson, IU, El-Daoushy, MFAF, Abd-El-Mageed, A, Klasson, M. 1974. A comparison of different methods for pretreatment of bones. I. Geologiska Föreningens i Stockholm Förhandlingar 96:171–81.Google Scholar
Olsson, IU, El-Daoushy, F, Vasari, Y. 1983. Säynäjälampi and the difficulties inherent in the dating of sediments in a hard-water lake. Hydrobiologia 103:514.CrossRefGoogle Scholar
Olsson, IU, Holmgren, B, Skye, E. 1984. Questions arising when using lichen for 14C measurements in climatic studies. In: Mörner, N-A, Karlén, W, editors. Climatic Changes on a Yearly to Millennial Basis. Dordrecht: D Reidel Publishing Company. p 303–8.Google Scholar
Östlund, HG. 1959. Stockholm natural radiocarbon measurements II. American Journal of Science Radiocarbon Supplement 1:3544.Google Scholar
Östlund, HG, Engstrand, LG. 1960. Stockholm natural radiocarbon measurements III. American Journal of Science Radiocarbon Supplement 2:186–96.Google Scholar
Östlund, HG, Engstrand, LG. 1963. Stockholm natural radiocarbon measurements V. Radiocarbon 5:203–27.Google Scholar
Otlet, RL. 1979. An assessment of laboratory errors in liquid scintillation methods of 14C dating. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 256–67.Google Scholar
Otlet, RL, Slade, BS. 1974. Harwell radiocarbon measurements I. Radiocarbon 16(2):178–91.Google Scholar
Otlet, RL, Evans, GV. 1983. Progress in the application of miniature gas counters to radiocarbon dating of small samples. In: Hackens, T, Mook, WG, Waterbolk, HT, editors. Proceedings of 14C and Archaeology, Groningen, the Netherlands 1981. PACT 8:213–22.Google Scholar
Otlet, RL, Walker, AJ, Longley, H. 1983. The use of 14C in natural materials to establish the average gaseous dispersion patterns of releases from nuclear installations. Radiocarbon 25(2):593602.Google Scholar
Overbeck, F, Münnich, KO, Aletsee, L, Averdieck, FR. 1957. Das Alter des “Grenzhorizonts” norddeutscher Hochmoore nach Radiocarbon-Datierungen. Flora 45:3771.Google Scholar
Pazdur, MF, Zastawny, A. 1987. Drastic increase of background in the Gliwice Radiocarbon Laboratory during late April, 1986, and its time changes. Radiocarbon 29(1):156–8.Google Scholar
Pearson, GW. 1979. Precise 14C measurements by liquid scintillation counting. Radiocarbon 21(1):121.Google Scholar
Pearson, GW, Stuiver, M. 1986. High-precision calibration of the radiocarbon time scale 500–2500 BC. Radiocarbon 28(2B):839–62.Google Scholar
Polach, D. 1988. Radiocarbon Dating Literature. The first 21 years 1947–1968. London: Academic Press. 370 p.Google Scholar
Polach, H. 1973. Cross checking of NBS oxalic acid and secondary laboratory radiocarbon standards. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 688717.Google Scholar
Polach, HA. 1979. Correlation of 14C activity of NBS oxalic acid with Arizona 1850 wood and ANU Sucrose standards. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 115–24.Google Scholar
Polach, HA, Krueger, HW. 1973. Isotopic fractionation of NBS oxalic acid and ANU-sucrose radiocarbon dating standards. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 719–26.Google Scholar
Polach, HA, Krueger, HW, Bannister, B, Damon, PE, Rafter, AT. 1973. Correlation of C14 activity of NBS oxalic with Arizona-1850 wood and ANU-sucrose radiocarbon dating standards: a preliminary report of investigations and results. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 686–7.Google Scholar
Povinec, P, Chudý, M, Šivo, 1986. Anthropogenic radiocarbon: past, present, and future. Radiocarbon 28(2A) 668–72.Google Scholar
Radnell, CJ, Aitken, MJ, Otlet, RL. 1979. In situ 14C production in wood. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 643–57.Google Scholar
Ralph, EK, Michael, HN. 1970. MASCA radiocarbon dates for sequoia and bristlecone-pine samples. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons.p 619–23.Google Scholar
Ralph, EK, Michael, HN, Han, MC. 1973. Radiocarbon dates and reality. MASCA Newsletters 9(1):120.Google Scholar
Revelle, R, Suess, HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:1827.Google Scholar
Sand-Jensen, K, Prahl, C. 1982. Oxygen exchange with the lacunae and across leaves and roots of the submerged vascular macrophyte, Lobelia dortmanna L. The New Phytologist 91:103–20.Google Scholar
Saupé, F, Strappa, O, Coppens, R, Guillet, B, Jaegy, R. 1980. A possible source of error in 14C dates: volcanic emanations (examples from the Monte Amiata district, provinces of Grosetto and Sienna, Italy). Radiocarbon 22(2):525–31.Google Scholar
Säve-Söderbergh, T, Olsson, IU. 1970. C14 dating and Egyptian chronology. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 3555.Google Scholar
Schove, DJ. 1955. The sunspot cycle 649 B.C. to 2000 A.D. Journal of Geophysical Research 60(2):127–45.Google Scholar
Segl, M, Levin, I, Schoch-Fischer, H, Münnich, M, Kromer, B, Tschiersch, J, Münnich, KO. 1983. Anthropogenic 14C variations. Radiocarbon 25(2):583–92.Google Scholar
Šilar, J. 1976. Radiocarbon ground-water dating in Czechoslovakia—first results. Věstnik Ústrědniho ústavu Geologického 51:209–20.Google Scholar
Smith, FA, Walker, NA. 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3– and to carbon isotopic discrimination. The New Phytologist 86:245–59.Google Scholar
Søndergaard, M, Sand-Jensen, K. 1979. Carbon uptake by leaves and roots of Littorella uniflora (L.) Aschers. Aquatic Botany 6:112.Google Scholar
Sonninen, E, Jungner, H, Erämetsä, P. 1985. Dating of mortar and bricks from the castle of Kastelholm. In: Edgren, T, Jungner, H, editors. Proceedings Third Nordic Conference on the Application of Scientific Methods in Archaeology, Mariehamn, Åland. Iskos 5:384–9.Google Scholar
Stafford, TW Jr, Jull, AJT, Brendel, K, Duhamel, RC, Donahue, D. 1987. Study of bone radiocarbon dating accuracy at the University of Arizona NSF Accelerator Facility for Radioisotope Analysis. Radiocarbon 29(1):2444.Google Scholar
Steemann Nielsen, E. 1946. Carbon sources in the photosynthesis of aquatic plants. Nature 158(4017):594–6.Google Scholar
Stenhouse, MJ, Baxter, MS. 1976. Glasgow University radiocarbon measurements VIII. Radiocarbon 18(2):161171.Google Scholar
Stenhouse, MJ, Baxter, MS. 1977. Bomb 14C as a biological tracer. Nature 267(5614):828–32.Google Scholar
Strömberg, B. 1985. Revision of the lateglacial Swedish varve chronology. Boreas 14:101–5.Google Scholar
Stuiver, M. 1961. Variations in radiocarbon concentration and sunspot activity. Journal of Geophysical Research 66(1):273–6.Google Scholar
Stuiver, M. 1965. Carbon-14 content of 18th- and 19th-century wood: variations correlated with sunspot activity. Science 149(3683):533–5.Google Scholar
Stuiver, M. 1978a. Atmospheric carbon dioxide and carbon reservoir changes. Science 199(4326):253–8.Google Scholar
Stuiver, M. 1978b. Radiocarbon timescale tested against magnetic and other dating methods. Nature 273(5660):271–4.CrossRefGoogle Scholar
Stuiver, M. 1980. Workshop on 14C data reporting. Radiocarbon 22(3):964–6.Google Scholar
Stuiver, M. 1982. A high-precision calibration of the AD radiocarbon time scale. Radiocarbon 24(1):126.Google Scholar
Stuiver, M. 1983. International agreements and the use of a new oxalic acid standard. Radiocarbon 25(2):793–5.Google Scholar
Stuiver, M, Becker, B. 1986. High-precision decadal calibration of the radiocarbon time scale, AD 1950–2500 BC. Radiocarbon 28(2B):863910.Google Scholar
Stuiver, M, Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon 35(1):3565.Google Scholar
Stuiver, M, Deevey, ES. 1961. Yale natural radiocarbon measurements VI. Radiocarbon 3:126–40.Google Scholar
Stuiver, M, Deevey, ES. 1962. Yale natural radiocarbon measurements VII. Radiocarbon 4:250–62.Google Scholar
Stuiver, M, Pearson, GW. 1986. High-precision calibration of the radiocarbon time scale AD 1950–500 BC. Radiocarbon 28(2B):805–38.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Quay, PD. 1980. Changes in atmospheric carbon-14 attributed to a variable sun. Science 207(4426):11–9.Google Scholar
Stuiver, M, Reimer, PJ. 1986. A computer program for radiocarbon age calibration. Radiocarbon 28(2B):1022–30.Google Scholar
Stuiver, M, Suess, HE. 1966. On the relationship between radiocarbon dates and true ages. Radiocarbon 8:534–40.Google Scholar
Stuiver, M, Heusser, CJ, Che Yang, I. 1978. North American glacial history extended to 75,000 years ago. Science 200(4337):1621.Google Scholar
Stuiver, M, Kromer, B, Becker, B, Ferguson, CW. 1986a. Radiocarbon age calibration back to 13,300 years BP and the 14C age matching of the German oak and US Bristlecone pine chronologies. Radiocarbon 28(2B):969–79.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986b. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.Google Scholar
Suess, HE. 1953. Natural radiocarbon and the rate of exchange of carbon dioxide between the atmosphere and the sea. In: Proceedings of the Williams Bay Conference on Nuclear Settings. p 52–6.Google Scholar
Suess, HE. 1954. Natural radiocarbon measurements by acetylene counting. Science 120(3105):57.Google Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415–7.Google Scholar
Suess, HE. 1968. Climatic changes, solar activity, and the cosmic-ray production rate of natural radiocarbon. Meteorological Monographs 8(30):146–50.Google Scholar
Suess, HE. 1970a. Bristlecone-pine calibration of the time-scale 5200 B.C. to the present. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 303–11.Google Scholar
Suess, HE. 1970b. The three causes of the secular C14 fluctuations, their amplitudes and time constants. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. Stockholm: Almqvist & Wiksell; New York: John Wiley & Sons. p 595605.Google Scholar
Suess, HE. 1979a. The 14C level during the fourth and second half of the fifth millennium B.C and the 14C calibration curve. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 538–44.Google Scholar
Suess, HE. 1979b. A calibration table for conventional radiocarbon dates. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 777–84.Google Scholar
Suess, HE. 1980. The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22(2):200–9.Google Scholar
Suess, HE. 1986. Secular variations of cosmogenic 14C on Earth: their discovery and interpretation. Radiocarbon 28(2A):259–65.Google Scholar
Sulerzhitzky, LD. 1970. Radiocarbon dating of volcanoes. Bulletin Volcanologique 35:8594.Google Scholar
Switsur, VR. 1973. Combustion bombs for radiocarbon dating. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 120–32.Google Scholar
Tamers, MA. 1966. Routine carbon-14 dating using liquid scintillation techniques. In: Chatters, RM, editor. Proceedings of the Sixth International Conference Radiocarbon and Tritium Dating. Pullman, Washington, 7–11 June 1965 (Conf. 650652). p 5367.Google Scholar
Tans, PP, Mook, WG. 1979. Design, construction and calibration of a high accuracy carbon-14 counting set up. Radiocarbon 21(1):2240.Google Scholar
Tans, PP, Mook, WG. 1980. Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. Tellus 32:268–83.Google Scholar
Tauber, H. 1979. 14C activity of Arctic marine mammals. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 447–52.Google Scholar
Tauber, H. 1981. 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292(5821):332–3.Google Scholar
Tauber, H. 1983a. 14C dating of human beings in relation to dietary habits. In: Hackens, T, Mook, WG, Waterbolk, HT, editors. Proceedings of 14C and Archaeology, Groningen, the Netherlands 1981. PACT 8:365–75.Google Scholar
Tauber, H. 1983b. Possible depletion in 14C in trees growing in calcareous soils. Radiocarbon 25(2):417–20.Google Scholar
Taylor, RE. 1987. Radiocarbon Dating. San Diego: Academic Press. 212 p.Google Scholar
Thorarinsson, S. 1944. Tefrokronologiska studier på Island. Geografiska Annaler Stockholm 26:1217.Google Scholar
Troughton, JH. 1973. Carbon isotope fractionation by plants. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 420–38.Google Scholar
Valastro, S Jr, Land, LS, Varela, AG. 1977. An improved procedure for wet combustion of the 14C NBS oxalic acid standard. Radiocarbon 19(3):375–82.Google Scholar
Valastro, S Jr, Land, LS, Varela, AG. 1979. An improved procedure for wet oxidation of the 14C NBS oxalic acid standard. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. University of California Press. p 125–34.Google Scholar
van der Merwe, NJ, Vogel, JC. 1978. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276(5690):815–6.CrossRefGoogle ScholarPubMed
van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1983. Radiocarbon dating of old mortars. In: Hackens, T, Mook, WG, Waterbolk, HT, editors. Proceedings of 14C and Archaeology, Groningen, the Netherlands 1981. PACT 8:337–43.Google Scholar
Vita-Finzi, C, Roberts, N. 1984. Selective leaching of shells for 14C dating. Radiocarbon 26(1):54–8.Google Scholar
Vogel, JC. 1960. Isotope separation factors of carbon in the equilibrium system CO2—HCO3 —CO3 . In: Summer Course on Nuclear Geology Varenna. p 216–21.Google Scholar
Vogel, JC, Fuls, A, Visser, E, Becker, B. 1986. Radiocarbon fluctuations during the third millennium BC. Radiocarbon 28(2B):935–8.Google Scholar
Vogel, JC, Fuls, A, Visser, E, Becker, B. 1993. Pretoria calibration curve for short-lived samples 1930–3350 BC. Radiocarbon 35(1):7385.Google Scholar
Walton, A, Baxter, MS, Callow, WJ, Baker, MJ. 1967. Carbon-14 concentrations in environmental materials and their temporal fluctuations. In: Radioactive Dating and Methods of Low-Level Counting. Vienna: IAEA. p 41–7.Google Scholar
Watt, DE, Ramsden, D, Wilson, HW. 1961. The half-life of carbon-14. International Journal of Applied Radiation and Isotopes 11(1):6874.Google Scholar
Wickman, FE. 1952. Variations in the relative abundance of the carbon isotopes in plants. Geochimica et Cosmochimica Acta 2:243–54.Google Scholar
Willis, EH, Tauber, H, Münnich, KO. 1960. Variations in the atmospheric radiocarbon concentration over the past 1300 years. American Journal of Science Radiocarbon Supplement 2:14.Google Scholar
Willkomm, H, Erlenkeuser, H. 1973. C14 measurements on water, plants and sediments of lakes. In: Proceedings of the Eighth International Radiocarbon Dating Conference. Lower Hutt, New Zealand, 18–25 October 1972. p 312–23.Google Scholar
Wilson, AT, Gumbley, JM, Speddin, DJ. 1963. Resin metabolism in the sapwood of Pinus radiata. Nature 198(4879):500.Google Scholar
Wium-Andersen, S. 1971. Photosynthetic uptake of free CO2 by the roots of Lobelia dortmanna. Physiologia Plantarum 25:245–8.Google Scholar