Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:21:30.991Z Has data issue: false hasContentIssue false

Radiocarbon Dating in the Vernadsky Institute I-IV

Published online by Cambridge University Press:  18 July 2016

A. P. Vinogradov
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Academy of Sciences, USSR, Moscow
A. L. Devirts
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Academy of Sciences, USSR, Moscow
E. I. Dobkina
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Academy of Sciences, USSR, Moscow
N. G. Markova
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Academy of Sciences, USSR, Moscow
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Results of absolute age determination by the radiocarbon method, obtained in the Radiocarbon Laboratory of the Vernadsky Institute are given in this article. The counting of natural C14 activity was realized by measuring the gaseous carbon compounds—CO2 and C2H6—with the aid of a proportional counter. Investigation objects were wood, peat, coal, plant and animal remains and other organic material. All samples were preliminarily treated with hot 2% NaOH and 5% HCl to remove foreign humic acid and carbonate. Carbon dioxide, which was obtained after burning, was freed of electronegative admixtures by purification with the aid of CaO. Ethane was synthesized from the sample carbon through the following stages: natural sample→CO2→CaCO3→CaC2→C2H2→C2H6. The counting gas was let into the counter up to a pressure of 2 atm. Counters of stainless steel or copper of different volumes from 0.5 to 2 litres were used. The screening of the counters was effected by steel (24 cm thick) and mercury (2.5 cm thick) shields; the counter together with the mercury shield was enclosed in a circle of Geiger counters of the GS-60 type arranged in anti-coincidence. A detailed description of the methods, the constructions and the apparatus has been published (Vinogradov, Devirts, Dobkina, Markova, Martishchenko, 1961).

Type
Research Article
Copyright
Copyright © The American Journal of Science 

References

Alexeev, M. N., 1957, Contribution to the Pleistocene geomorphology and stratigraphy of the river Vilyui lower reaches: Bull. Komissii po izucheniu chetvertichnogo perioda, no. 21, p. 8796.Google Scholar
Alexeev, V. A., Ivanova, I. K., Kind, N. V., Chernysh, A. P., 1964, New data on the absolute age of the Late-Paleolithic layers of the site Molodovo V at the river Dnestr middle course: Doklady Akad. Nauk SSSR, v. 156, no. 2, p. 315317.Google Scholar
Bardin, V. I., 1963, Mountains of the central part of Queen Maud's Land (Eastern Antarctic): Abstract from Thesis for a candidate's (geog. sci.) degree, Moscow.Google Scholar
Basalikas, A. A., 1957, Principal features of the Lithuanian Soviet Soc. Republic relief: Nauchnye Soobshchenya Instituta geologii i geografii Ak. Neuk Litovskoi SSR, Vilnus, v. 4, p. 237246.Google Scholar
Chebotareva, N. S., Serebryanny, L. R., Devirts, A. L., Dobkina, E. I., 1962, Absolute age of the low river terraces in the centre of the Russian plain: Izvestia Akad. Nauk SSSR, ser. geograficheskaya, no. 4, p. 7074.Google Scholar
Chebotareva, N. S., Serebryanny, L. R., 1963, Paleogeographic estimations of radiocarbon dating of the Upper-Quaternary sediments in the Russian plain centre: in Absolute Geochronology of the Quaternary Period, Moscow, Acad. of Sci., USSR, p. 117122.Google Scholar
Danilans, I. Ya., 1962, Problems of the Pleistocene deposit stratigraphy of Latvia: in Problems of Quaternary Geology, Riga.Google Scholar
Gerasimov, I. P., Chebotareva, N. S., 1963, The absolute age of the last Valdai glaciation in the north-western part of the Russian plain: Izvestia Ak. Nauk SSSR, Seria Geograf., no. 5, p. 3644.Google Scholar
Gerasimov, I. P., Serebryanny, L. R., Chebotareva, N. S., 1963, Stratigraphic components of the Pleistocene of Northern Europe and their correlation: in Anthropogene of the Russian Plain and Its Stratigraphical Components, M., Acad. Sci. USSR, p. 560.Google Scholar
Godwin, H., Walker, D., Willis, E. H., 1957, Radiocarbon dating and post-glacial vegetational history: Scaleby Moss: Proc. of Royal Soc., ser. B., v. 147, no. 928, p. 352366.Google Scholar
Grosswald, M. G., Devirts, A. L., Dobkina, E. I., 1961, About the history of the Holocene of the Franz Tosef Land: Doklady Ak. Nauk SSSR, v. 141, no. 5, p. 11751178.Google Scholar
Grosswald, M. G., Devirts, A. L., Dobkina, E. I., 1963, Glacial stages Sedova and Victoria: Materialy glyatsologicheskikh issledovanii, no. 7, p. 149151.Google Scholar
Grosswald, M. G., Devirts, A. L., Dobkina, E. I., 1964, One more dating of the coast of Franz Josef Land: Materialy glyatsologicheskikh issledovanii, no. 10, p. 273274.Google Scholar
Gudelis, V. K., 1961, Outline of the geology and paleogeography of the Lithuanian Quaternary period (Anthropogene): in Czwartorzed Europy Środkowej i Wschodniej, cz. 1, Institut Geologiczny, Prace, t. 34. Warszawa.Google Scholar
Heintz, A. E., Garutt, V. E., 1964, Determination of the absolute age of a fossil mammoth and a woolly rhinoceros remains from the permafrost region of Siberia with the aid of radioactive carbon (C14): Doklady Ak. Nauk SSSR, v. 154, no. 6, p. 13671370.Google Scholar
Ivanova, I. K., 1959, Geological conditions of discovering paleolithic sites in the middle part of the river Dnestr Foreland: Trudv Komissii po izucheniu chetvertichnogo perioda, no. 15, p. 215.Google Scholar
Ivanova, I. K., Chernysh, A. P., 1963, Absolute age of the Upper Paleolith (Solutrean, Gravettian type) of the river Dnestr Foreland according to data of the radiocarbon analysis: Doklady Ak. Nauk SSSR, v. 148, no. 2, p. 410413.Google Scholar
Iversen, J., 1953, Radiocarbon dating of the Alleröd pediod: Science, v. 118, no. 3053, p. 911.Google Scholar
Khotinsky, N. A., 1964a, Comparison of schemes for a zonal separation of the Late-Glacial and the Post-Glacial time with the aid of synchronizing levels: Doklady Ak. Nauk SSSR, v. 156, no. 1, p. 7477.Google Scholar
Khotinsky, N. A., 1964b, Paleogcography of the Upper Pleistocene and Holocene of the eastern margin of the Upper Volga lowland: Thesis for a candidate's (geog. sci.) degree, Moscow.Google Scholar
Kondratiene, O. P., 1960, Stratigraphy and paleogeography of the Lithuanian Neo-Pleistocene according to palynologic data: Abstract from Thesis for a candidate's (geol. mineral sci.) degree, Vilnus.Google Scholar
Korzhuev, S. S., Fedorova, R. V., 1962, The mammoth from Chekurovka and its inhabiting conditions: Doklady Akad. Nauk SSSR, v. 143, no. 1, p. 181183.Google Scholar
Lavrushin, Yu. A., Devins, A. L., Giterman, R. E., Markova, N. G., 1963, First data on the absolute chronology of the chief events in the north-eastern part of the USSR: Bull. Komissii po izucheniu chetvertichnogo perioda, no. 28, p. 112126.Google Scholar
Marenina, T. Yu., 1959, The volcano Khangar in the Middle Ridge of Kamchatka: Trudy Laboratorii vulkanologii, no. 17, p. 363.Google Scholar
Neistadt, M. I., 1957, History of woods and paleogeography of the USSR in the Holocene: Moscow, Acad. Sci. USSR.Google Scholar
Neistadt, M. I., Devirts, A. L., Markova, N. G., Dobkina, E. I., Khotinsky, N. A., 1962, Dating of the holocenic sediments by the radiocarbon method and according to data of the pollinic analysis: Doklady Ak. Nauk SSSR, v. 144, no. 5, p. 11291131.Google Scholar
Nilsson, T., 1964, Standardpollendiagramme und C14-Datierungen aus dem Ageröds Mosse im mittleren Schonen: Publs. from Insts. of Mineralogy, Paleontology and Quaternary Geology, Sweden, no. 124.Google Scholar
Olsson, I., 1960, Uppsala natural radiocarbon measurements, II: Am. Jour. Sci. Radioc. Suppl., v. 2, p. 112128.Google Scholar
Paleogeography and Chronology of the Upper Pleistocene and Holocene According to Data of the Radiocarbon Method, 1965, ed. by Neistadt, M. I.: Moscow, Acad. Sci. USSR.Google Scholar
Péwé, T. L., Rivard, N. R., Llano, G. A., 1959, Mummified seal carcasses in the McMurdo Sound Region, Antarctica: Science, v. 130, no. 3377, p. 716.Google Scholar
Piip, B. I., 1948, New eruptive state of the volcano Shiveluch from the end of 1944 to May 1945 and some notices on the geological structure of the volcano and its previous eruptions: Bull. vulcanologicheskoi Stantsii na Kamchatke, no. 14.Google Scholar
Rauschenbach, V. M., 1956, The Middle Transurals during the Neolith and Bronze epoch: Trudy Gosud. Istoricheskogo Museya, no. 29.Google Scholar
Seibutis, A. A., 1962. On the stratigraphic significance of the double-layered subsapropelic peaty formations: Trudy Ak. Nauk Litovskoi SSR, ser. B, no. 3, p. 173178.Google Scholar
Serebryanny, L. R., Devirts, A. L., Markova, N. G., 1962, New data on the absolute age of the Alleröd sediments in the environs of Leningrad: Bull. Komissii po izucheniu chetvertichnogo perioda, no. 27, p. 151153.Google Scholar
Serebryanny, L. R., Chebotareva, N. S., 1963, Some debatable problems of paleogeography and stratigraphy of the quaternary sediments in the centre and north-west of the Russian plain (in connection with data of the radiocarbon method): in Anthropogene of the Russian Plain and Its Stratigraphical Components, Moscow, p. 7485.Google Scholar
Tolstov, S. P., 1961, Scythian and Khorezm of the Aral Sea Foreland; Sovetskaya Etnografia, no. 4, p. 114146.Google Scholar
Velichko, A. A., Devirts, A. L., Dobkina, E. I., Morozova, T. D., Chichagova, O. A., 1964, First determinations of fossil soils in loesses of the Russian plain: Doklady Ak. Nauk SSSR, v. 155, no. 3, p. 355359.Google Scholar
Vinogradov, A. P., 1954, Geochemistry of isotopes: Vestnik Akad. Nauk SSSR, no. 5, p. 33.Google Scholar
Vinogradov, A. P., Devirts, A. L., Dobkina, E. I., Markova, N. G., Martishchenko, L. G., 1956, Determination of the absolute age according to C14 . Communication 1: Geokhimia, no. 8, p. 39.Google Scholar
Vinogradov, A. P., Devirts, A. L., Dobkina, E. I., Markova, N. G., Martishchenko, L. G., 1959, Determination of the absolute age according to C14 . Communication 2: Geokhimia, no. 8, p. 663668.Google Scholar
Vinogradov, A. P., Devirts, A. L., Dobkina, E. I., Markova, N. G., 1962, Determination of the absolute age according to C14 . Communication 3: Geokhimia, no. 5, p. 387402.Google Scholar
Vinogradov, A. P., Devirts, A. L., Dobkina, E. I., Markova, N. G., 1963, Determination of the absolute age according to C14 . Communication 4: Geokhimia, no. 9, p. 795811.Google Scholar
Vinogradov, A. P., Devirts, A. L., Dobkina, E. I., Markova, N. G., Martishchenko, L. G., 1963, Determination of the absolute age according to C14 with the aid of a proportional counter: Moscow, Acad. Sci. USSR.Google Scholar
Vinogradov, A. P., Devirts, A. L., Markova, N. G., Khotinsky, N. A., 1963, Determination of the boundary between the Late-Glacial and the Post-Glacial time according to C14 and data of the spore-pollinic analysis: Geokhimia, no. 11, p. 971980.Google Scholar
Vinogradov, A. P., Grinenko, V. A., Ustinov, V. I., 1962, Isotopic composition of sulphur compounds in the Black Sea: Geokhimia, no. 10, p. 851873.Google Scholar
Voznyachuk, L. N., 1959, Conditions of the Riss-Würm deposits in the Grodno province and the adjacent areas of Lithuania and Poland: Vestnik Ak. Nauk Byelorussian Sov. Soc. Rep., Seria fisiko-tekhnicheskikh nauk, no. 4, p. 112.Google Scholar