Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T20:51:53.854Z Has data issue: false hasContentIssue false

Radiocarbon Determination of Particulate Organic Carbon in Non-Temperated, Alpine Glacier Ice

Published online by Cambridge University Press:  18 July 2016

Peter Steier*
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Straße 17, A-1090 Wien, Austria
Roswitha Drosg
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Straße 17, A-1090 Wien, Austria
Mariaelenea Fedi
Affiliation:
Dipartimento di Fisica dell'Università di Firenze and INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
Walter Kutschera
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Straße 17, A-1090 Wien, Austria
Martin Schock
Affiliation:
Institut für Umweltphysik, Universität Heidelberg, Im Neuheimer Feld 229, 69120 Heidelberg, Germany
Dietmar Wagenbach
Affiliation:
Institut für Umweltphysik, Universität Heidelberg, Im Neuheimer Feld 229, 69120 Heidelberg, Germany
Eva Maria Wild
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Straße 17, A-1090 Wien, Austria
*
Corresponding author. Email: peter.steier@univie.ac.at.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dating ice samples from glaciers via radiocarbon is a challenge that requires systematic investigations. This work describes an approach for extraction and accelerator mass spectrometry (AMS) 14C analysis of the particulate organic carbon (POC) fraction in glacier ice samples. Measurements were performed at VERA (Vienna Environmental Research Accelerator) on ice samples obtained mainly from the non-temperated ablation zone of the Grenzgletscher (Grenz Glacier) system (Monte Rosa Massif, Swiss Alps). The samples were obtained from 2 sampling sites situated roughly on a common flow line. The sample masses used were between 0.3 and 1.4 kg of ice, yielding between 18 and 307 μg of carbon as POC. The carbon contamination introduced during sample processing varied between 5.4 and 33 μg C and originated mainly from the quartz filters and the rinsing liquids used in processing. Minimum sample sizes for successful graphitization of CO2 in our laboratory could be reduced to <10 μg carbon, with a background in the graphitization process of ∼0.5 μg of 40-pMC carbon. Evaluation of the whole procedure via 11 Grenzgletscher samples revealed a surprisingly large scatter of pMC values. We obtain a mean calibrated age of 2100 BC to AD 900 (95.4% confidence level), which is not significantly different for the 2 sampling sites. Discussions of these results suggest that single 14C dates of glacial POC are presently of limited significance. Future improvements with respect to analytical precision and sample characterization are proposed in order to fully explore the POC dating potential.

Type
Articles
Copyright
Copyright © 2006 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Armbruster, M. 2000. Stratigraphische Datierung hochalpiner Eisbohrkerne über die letzten 1000 Jahre [Master's thesis]. Heidelberg: Institut für Umweltphysik, Universität Heidelberg. In German.Google Scholar
Biegalski, SR, Currie, LA, Fletcher, RA, Klouda, GA, Weissenbök, R. 1998. AMS and microprobe analysis of combusted particles in ice and snow. Radiocarbon 40(1):310.CrossRefGoogle Scholar
Chýlek, P, Srivastava, V, Cahenzli, L, Pinnick, RG, Dod, RL, Novakov, T, Cook, TL, Hinds, BD. 1987. Aerosol and graphitic carbon content of snow. Journal of Geophysical Research 92:9801–9.Google Scholar
Eisen, O, Nixdorf, U, Keck, L, Wagenbach, D. 2003. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body. Tellus B 55:1007–17.Google Scholar
EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429:623–8.Google Scholar
Goslar, T, van der Knaap, WO, Hicks, S, Andri, M, Czernik, J, Goslar, E, Räsänen, S, Hyötylä, H. 2005. Radiocarbon dating of modern peat profiles: pre- and post-bomb 14C variations in the construction of age-depth models. Radiocarbon 47(1):115–34.CrossRefGoogle Scholar
Haeberli, W. 1975. Eistemperaturen in den Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 11/2:203–20. In German.Google Scholar
Haeberli, W, Kääb, A, Wagner, S, Vonder Mühll, D, Geissler, P, Haas, JN, Glatzel-Mattheier, H, Wagenbach, D. 1999. Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtel-Corvatsch, Swiss Alps: geomorphological and glaciological implications. Journal of Glaciology 45/149:18.CrossRefGoogle Scholar
Hammer, C, Mayewski, PA, Peel, D, Stuiver, M. 1997. Preface. Journal of Geophysical Research 102:26,3156.CrossRefGoogle Scholar
der Schweiz, Landeskarte, 1:25000: Zermatt [map]. 1995. Bundesamt für Landestopographie. Wabern, Switzerland.Google Scholar
Lal, D, Jull, AJT, Donahue, DJ, Burtner, D, Nishiizumi, K. 1990. Polar ice ablation rates measured using in situ cosmogenic 14C. Nature 346:350–2.Google Scholar
Lal, D, Jull, AJT, Burr, GS, Donahue, DJ. 2000. On the characteristics of cosmogenic in situ 14C in some GISP2 Holocene and late glacial ice samples. Nuclear Instruments and Methods in Physics Research B 172:623–31.CrossRefGoogle Scholar
Lal, D, Jull, AJT, Donahue, DJ, Burr, GS, Deck, B, Jouzel, J, Steig, E. 2001. Record of cosmogenic in situ produced 14C in Vostok and Taylor Dome ice samples: implications for strong role of wind ventilation processes. Journal of Geophysical Research 106:31,93342.CrossRefGoogle Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon–a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.CrossRefGoogle Scholar
Meese, DA, Gow, AJ, Alley, RB, Zielinski, GA, Grootes, PM, Ram, M, Taylor, KC, Mayewski, PA, Bolzan, JF. 1997. The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102:26,41123.CrossRefGoogle Scholar
Müller, JW. 2000. Possible advantages of a robust evaluation of comparisons. Journal of Research of the National Institute of Standards and Technology 105:551–5.Google ScholarPubMed
Petit, JR, Jouzel, J, Raynaud, D, Barkov, NI, Barnola, J-M, Basile, I, Benders, M, Chappellaz, J, Davis, M, Delayque, G, Delmotte, M, Kotlyakov, VM, Legrand, M, Lipenkov, VY, Lorius, C, Pépin, L, Ritz, C, Saltzman, E, Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–36.CrossRefGoogle Scholar
Reeh, N, Oerter, H, Lettrguilly, A, Miller, H, Hubberten, HW. 1991. A new, detailed ice-age oxygen-18 record from the ice sheet margin in central West Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 90:373–83.Google Scholar
Renaud, A. 1952. Observations on the surface movement and ablation of the Gorner Glacier (Switzerland). Journal of Glaciology 2/11:54–7.Google Scholar
Rom, W, Brenninkmeijer, CAM, Bronk Ramsey, C, Kutschera, W, Priller, A, Puchegger, S, Röckmann, T, Steier, P. 2000. Methodological aspects of atmospheric 14CO measurements with AMS. Nuclear Instruments and Methods in Physics Research B 172:530–6.CrossRefGoogle Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506–19.CrossRefGoogle Scholar
Seinfeld, JH. 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: John Wiley & Sons. 1326 p.Google Scholar
Steier, P, Dellinger, F, Kutschera, W, Rom, W, Wild, EM. 2004. Pushing the precision limit of 14C measurements with AMS. Radiocarbon 46(2):969–78.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Szidat, S, Jenk, TM, Gäggeler, HW, Synal, HA, Hajdas, I, Bonani, G, Saurer, M. 2004. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nuclear Instruments and Methods in Physics Research B 223–224:829–36.Google Scholar
Thompson, LG, Davis, ME, Mosley-Thompson, E, Sowers, TA, Henderson, KA, Zagorodnov, VS, Lin, P-N, Mikhalenko, VN, Campen, RK, Bolzan, JF, Cole-Dai, J, Francou, B. 1998. A 25,000-year tropical climate history from Bolivian ice cores. Science 282:1858–64.CrossRefGoogle ScholarPubMed
Thompson, LG, Mosley-Thompson, E, Davis, ME, Henderson, KA, Brecher, HH, Zagorodnov, VS, Mashiotta, TA, Lin, P-N, Mikhalenko, VN, Hardy, DR, Beer, J. 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298:589–93.CrossRefGoogle ScholarPubMed
Van Roijen, JJ, van der Borg, K, de Jong, AFM, Oerlemans, J. 1995. Ages and ablation rates from 14C measurements on Antarctic ice. Annals of Glaciology 21:139–43.Google Scholar
Vandeputte, K, Moens, L, Dams, R, van der Plicht, J. 1998. Study of the 14C-contamination potential of C impurities in CuO and Fe. Radiocarbon 40(1):103–10.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5:289–93.CrossRefGoogle Scholar
Wagenbach, D. 1989. Environmental records in alpine glaciers and ice sheets. In: Oeschger, H, Langway, CC, editors. The Environmental Record in Glaciers and Ice Sheets. Dahlem Konferenzen. Chichester: John Wiley & Sons Limited. p 6983.Google Scholar
Weissenbök, R, Currie, LA, Gröllert, C, Kutschera, W, Marolf, J, Priller, A, Puxbaum, H, Rom, W, Steier, P. 2000. Accelerator mass spectrometry analysis of non-soluble carbon in aerosol particles from high alpine snow (Mt. Sonnblick, Austria). Radiocarbon 42(2):285–94.CrossRefGoogle Scholar