Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T21:52:31.309Z Has data issue: false hasContentIssue false

Radiocarbon Measurements of Paper: A Forensic Case Study to Determine the Absolute Age of Paper in Documents and Works of Art

Published online by Cambridge University Press:  31 October 2017

C Matthias Huels*
Affiliation:
Leibniz-Laboratory for Radiometric Dating and Isotope Research, Max-Eyth-Str.11-13, 24118 Kiel, Germany
Sabine Pensold
Affiliation:
PTS Papiertechnische Stiftung, Pirnaer Straße 37, 01809 Heidenau, Germany
Enrico Pigorsch
Affiliation:
PTS Papiertechnische Stiftung, Pirnaer Straße 37, 01809 Heidenau, Germany
*
*Corresponding author. Email: mhuels@leibniz.uni-kiel.de.

Abstract

In a case study to assess the possibilities and limitations of determining the exact age of paper, we measured radiocarbon (14C) concentrations in bulk-paper cellulose and starch extracts from 20 known-age paper samples of the last 65 yr. As expected, 14C concentrations in single-seasonal grown starch extracts are in reasonably good agreement with post-bomb atmospheric 14C. In contrast, 14C concentrations in bulk-paper cellulose indicate apparent admixtures of tree-ring fibers spanning up to >50 yr. In a forensic investigation, combining 14C results from single-seasonal components like starch with those from long-lived fibers, could potentially enhance the precision of paper production-date estimates for samples made after 1955.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016

References

REFERENCES

Al-Bashaireh, K, ElSerogy, A, Hussein, E, Shakhatreh, M. 2015. Genuine or forged? Assessing the authenticity of a confiscated manuscript using radiocarbon dating and archaeometric techniques. Archaeological and Anthropological Sciences, DOI: 10.1007/s12520-015-0286-8.Google Scholar
Beneke, K. 1999. Biographien und wissenschaftlichliche Lebensläufe von Kolloidwissenschaftlern, deren Lebensdaten mit 1996 in Verbindung stehen. Beiträge zur Geschichte der Kolloidwissenschaften, Volume 8, Mitteilungen der Kolloid-Gesellschaft, Verlag Reinhard Knof, Nehmten. ISBN 3-934413-01-3. p 1–355.Google Scholar
Bredekamp, H, Brückle, I, Needham, P, editors. 2014. A Galileo Forgery. Unmasking the New York Siderus Nuncius. Boston: De Gruyter Berlin.CrossRefGoogle Scholar
Bruhn, F, Duhr, A, Grootes, PM, Mintrop, A, Nadeau, M-J. 2001. Chemical removal of conservation substances by “soxhlet”-type extraction. Radiocarbon 43(2A):229237.CrossRefGoogle Scholar
Canosa, E, Hodgins, G, Weaver, G. 2013. Radiocarbon measurements on early photographs: methods development for testing waxed paper negatives. Radiocarbon 55(2):18621868.CrossRefGoogle Scholar
Clapp, VW. 1972. The story of permanent/durable book-paper 1115–1970. Restaurator 1(1972):151.Google Scholar
Fedi, ME, Caforio, L, Mandò, PA, Petrucci, F, Taccetti, F. 2013. May 14C be used to date contemporary art? Nuclear Instruments and Methods in Physics Research B 294:662665.CrossRefGoogle Scholar
Geyh, MA. 2001. Bomb radiocarbon dating of animal tissues and hair. Radiocarbon 43(2B):723730.Google Scholar
Göttsching, L, Katz, C. 1999. Papier-Lexikon. Deutscher Betriebswirte Verlag GmbH. ISBN: 3-8864-080-8. 1500 p.Google Scholar
Graven, HD. 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proceedings of the National Academy of Sciences 112(31):95429545.Google Scholar
Gullichsen, J, Paulapro, H, editors. 1998. Papermaking Science and Technology. A series of 19 Books Covering the Latest Technology and Future Trends. Helsinki: Fapet Oy. 693 p.Google Scholar
Harkness, DD, Walton, A. 1969. Carbon-14 in the biosphere and humans. Nature 223:12161218.CrossRefGoogle ScholarPubMed
Harkness, DD, Walton, A. 1972. Further investigations of the transfer of bomb 14C to man. Nature 240(5379):302303.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.Google Scholar
Levin, I, Kromer, B, Hammer, S. 2013. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65:17.Google Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239245.Google Scholar
Nadeau, M-J, Grootes, PM. 2013. Calculation of the compounded uncertainty of C AMS measurements. Nuclear Instruments and Methods in Physics Research 294:420425.Google Scholar
Pensold, S, Pigorsch, E. 2015. Neue analytische Möglichkeiten der Altersbestimmung bei Papier zur Erkennung von Fälschungen (Papieralterbestimmung). PTS-Forschungsbericht 25/13.Google Scholar
Pigorsch, E, Finger, M, Thiele, S, Brunner, E. 2015. Application of Raman microscopy to analysis of paper in documents and works of art. Paper presented at the 8th International Conference on the Application of Raman Spectroscopy in Art and Archaeology (RAA), Wroclaw, 1–5 September 2015.Google Scholar
Stenhouse, MJ, Baxter, MS. 1977. Bomb 14C as a biological tracer. Nature 267:828832.CrossRefGoogle ScholarPubMed
Stuiver, HA, Pollach, M. 1977. Reporting of 14C data: a discussion. Radiocarbon 19(3):355363.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research 5:289293.Google Scholar
Zavattaro, D, Quarta, G, D’Elia, M, Calcagnile, L. 2007. Recent documents dating: an approach using radiocarbon techniques. Forensic Science International 167(2–3):160162.CrossRefGoogle ScholarPubMed