Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T21:53:34.899Z Has data issue: false hasContentIssue false

Radiocarbon Verification of the Earliest Astro-Chronological Datum

Published online by Cambridge University Press:  30 August 2016

Ezra S Marcus*
Affiliation:
The Recanati Institute for Maritime Studies, University of Haifa, Haifa 31905, Israel
Michael W Dee
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
Christopher Bronk Ramsey
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
Thomas F G Higham
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
Andrew J Shortland
Affiliation:
Centre for Archaeological and Forensic Analysis, Department of Materials and Applied Sciences, Cranfield University, Shrivenham, Swindon SN6 8LA, UK
*
*Corresponding author. Email: ezra@research.haifa.ac.il.

Abstract

Papyri 10012A and 10012B from Illahun, Egypt, provide the earliest astro-chronological datum in history and, while calculated to various years in the 19th century BCE, have never been independently verified. As this datum enables the Middle Kingdom (MK) section of Egyptian historical chronology to be anchored in absolute time, it establishes the principal calendrical timeline for the eastern Mediterranean Bronze Age in the first half of the 2nd millennium BCE. AMS radiocarbon measurements of Papyrus 10012B establish its date range to 1886–1750 BCE, confirming the astronomical calculations and the essential reliability of Egyptian historical chronology for this period. Furthermore, all three leading estimates for the calendar year attribution of the document are supported by this analysis, with the role of a possible growing season effect determining which is most favored.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bietak, M. 2013. Antagonisms in historical and radiocarbon chronology. In: Shortland AJ, Bronk Ramsey C, editors. Radiocarbon and the Chronologies of Ancient Egypt. Oxford: Oxbow Books. p 76109.CrossRefGoogle Scholar
Bietak, M, Höflmayer, F. 2007. Introduction: High and Low Chronology. In: Bietak M, Czerny E, editors. The Synchronisation of Civilizations in the Eastern Mediterranean in the Second Millennium BC III. Vienna: Verlag der Österreichischen Akademie der Wissenshafften. p 1323.Google Scholar
Brock, F, Higham, TFG, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425430.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.CrossRefGoogle Scholar
Bronk Ramsey, C, Dee, MW, Rowland, JM, Higham, TFG, Harris, SA, Brock, F, Quiles, A, Wild, EM, Marcus, ES, Shortland, AJ. 2010. Radiocarbon-based chronology for dynastic Egypt. Science 328(5985):15541557.CrossRefGoogle ScholarPubMed
Dee, MW, Brock, F, Harris, SA, Bronk Ramsey, C, Shortland, AJ, Higham, TFG, Rowland, JM. 2010. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. Journal of Archaeological Science 37(4):687693.CrossRefGoogle Scholar
Hornung, E, Krauss, R, Warburton, DA, editors. 2006. Ancient Egyptian Chronology. Leiden: Brill.CrossRefGoogle Scholar
Kitchen, K. 2007. Egyptian and related chronologies: look, no sciences, no pots! In: Bietak M, Czerny E, editors. The Synchronisation of Civilizations in the Eastern Mediterranean in the Second Millennium BC III. Vienna: Verlag der Österreichischen Akademie der Wissenshafften. p 163171.Google Scholar
Krauss, R. 2006. Lunar days, lunar months, and the question of the ‘civil-based’ lunar calendar. In: Hornung E, Krauss R, Warburton DA, editors. Ancient Egyptian Chronology. Leiden: Brill. p 386391.CrossRefGoogle Scholar
Luft, U. 1992. Die chronologische Fixierung des ägyptischen Mittleren Reiches nach dem Tempelarchiv von Illahun . Vienna. Verlag der Österreichischen Akademie der Wissenshafften.Google Scholar
Parker, RA. 1950. The Calendars of Ancient Egypt. Chicago: University of Chicago Press.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Ward, WA. 1992. The present status of the Egyptian chronology. Bulletin of the American Schools of Oriental Research 288:5366.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determination: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Warren, P, Hankey, V. 1989. Aegean Bronze Age Chronology. Bristol: Bristol Classical Press.Google Scholar