Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T05:17:53.177Z Has data issue: false hasContentIssue false

Radiocarbon-dated peat development: anthropogenic and climatic signals in a Holocene raised bog and lake profile from the Eastern part of the Carpathian Basin

Published online by Cambridge University Press:  16 May 2018

Réka Orsolya Tapody*
Affiliation:
Department of Geology and Palaeontology, University of Szeged, Egyetem street 2, 6722 Szeged, Hungary
Sándor Gulyás
Affiliation:
Department of Geology and Palaeontology, University of Szeged, Egyetem street 2, 6722 Szeged, Hungary
Tünde Törőcsik
Affiliation:
Department of Geology and Palaeontology, University of Szeged, Egyetem street 2, 6722 Szeged, Hungary Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences (Atomki), Bem tér 18/c, 4026 Debrecen, Hungary
Pál Sümegi
Affiliation:
Department of Geology and Palaeontology, University of Szeged, Egyetem street 2, 6722 Szeged, Hungary Archaeological Institute of Hungarian Academy of Sciences, Úri street 49, Budapest, Hungary
Dávid Molnár
Affiliation:
Department of Geology and Palaeontology, University of Szeged, Egyetem street 2, 6722 Szeged, Hungary
Balázs P Sümegi
Affiliation:
Department of Geology and Palaeontology, University of Szeged, Egyetem street 2, 6722 Szeged, Hungary Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences (Atomki), Bem tér 18/c, 4026 Debrecen, Hungary
Mihály Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences (Atomki), Bem tér 18/c, 4026 Debrecen, Hungary
*
*Corresponding author. Email: tapody@geo.u-szeged.hu.

Abstract

The peat bog at Homoródszentpál Kerek-tó (Round Lake), situated in Homoród Hills of the Eastern Carpathians in Romania, provides a continuous record of paleoclimatic and paleoenvironmental changes from the Early Holocene. In this study, we present a 7500-year-long high-resolution record of past climatic changes and signs of human impact recorded in a peat bog via integrating sedimentological, paleoecological and geochemical proxies. The basin of Round Lake formed around the Pleistocene–Holocene border when the permafrost thawed. Ponded water accumulated in the catchment basin from the beginning of the Holocene but ca. 7500 cal BP years ago lacustrine sedimentation was exchanged for peat accumulation. The 570-cm-long core was subsampled at 2–4 cm intervals and subjected to grain-size, loss-on-ignition (LOI), pollen, and radiocarbon (14C) analyses. Our findings were correlated with and interpreted in the light of paleobotanical records deriving from archaeological sites and the newest bioclimatological models of the nearby areas. Sedimentological analysis document erosion and accumulation events which were influenced by more complex processes like climate change. Based on environmental historical and climatic data we aimed to reconstruct the environmental changes of forested areas in the Homoródi Hills.

Type
Soil
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aaby, B, Digerfeldt, G. 1986. Sampling techniques for lakes and bogs. In: Berglund BE, editor. Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester: John Wiley & Sons. p 181194.Google Scholar
Bennett, KD. 1992. PSIMPOLL–A quick Basic program that generates PostScript page description of pollen diagrams. INQUA Commission for the study of the Holocene: working group on data handling methods . Newsletter 8:1112.Google Scholar
Bennett, K.D. 2005. Documentation for Psimpoll 4.25 and Pscomb 1.03: C programs for plotting pollen diagrams and analysing pollen data. Uppsala: University of Uppsala.Google Scholar
Biagi, P, Spataro, M. 2005. New observations on the radiocarbon chronology of the Starčevo-Criş and Körös cultures. Prehistoric Archaeology & Anthropological Theory and Education. Reports of Prehistoric Research Projects. p 6–7.Google Scholar
Biagi, P, Gratuze, B, Boucetta, S. 2007. New data on the archaeological obsidians from the Banat and Transylvania (Romania). In: Biagi P, Spataro M, editors. A Short Walk through the Balkans: the First Farmers of the Carpathian Basin and Adjacent Regions. Quaderni della Società per la Preistoria e Protostoria della Regione Friuli–Venezia Giulia 12:129148.Google Scholar
Boghian, D, Enea, SC. 2013. The pre-Cucuteni-Cucuteni/Tripolye cultural complex between the west and the east. Revista Arheologica 9(1):3047.Google Scholar
Boghian, D, Enea, SC, Pîrnău, R-D, Secu, C. 2014. Elemente de Landscape Archaeology în zona siturilor Costeşti-Cier şi Giurgeşti-Dealul Mănăstirii, jud. Iaşi (Elements of landscape archaeology in the area of Costeşti-Cier and Giurgeşti-Dealul Mănăstirii, Iaşi county). In: ArheoVest II2 In honorem Gheorghe Lazarovici. Interdisciplinaritate în Arheologie. Szeged: JATE Press. p 571611.Google Scholar
Bolohan, N. 2010. All in one Issues of methodology, paradigms and radiocarbon datings concerning the outer eastern Carpathian area. In: Bolohan N, Florica M, Tencariu FA, editors. Signa praehistorica: studia in honorem magistri Attila László septuagesimo anno. Iasi: Alex. I. Cuza University Press. p 229245.Google Scholar
Bouzek, J. 1973. Archaeology of the Late Bronze Age and the Early Iron Age. Bronze Age Migrations in the Aegean. London: Duckworth.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Clark, RL. 1982. Point count estimation of charcoal in pollen preparations and thin sections in sediments. Pollen et Spores 24:523535.Google Scholar
Collis, J. 1984. The European Iron Age. London: Batsford.Google Scholar
Dean, WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Petrology 44(1):242248.Google Scholar
Dearing, J. 1994. Environmental Magnetic Susceptibility. Using the Bartington MS2 System. Kenilworth: Chi Publ.Google Scholar
Demény, A, Czuppon, G, Siklósy, Z, Leél-Őssy, S, Lin, K, Shen, CC, Gulyás, K. 2013. Mid-Holocene climate conditions and moisture source variations based on stable H, C and O isotope compositions of speleothems in Hungary. Quaternary International 293:150156.Google Scholar
Diaconu, AC, Tóth, M, Lamentowicz, M, Heiri, O, Kuske, E, Tanţău, I, Panait, A-M, Braun, M, Feurdean, A. 2017. How warm? How wet? Hydroclimate reconstruction of the past 7500 years in northern Carpathians, Romania. Palaeogeography, Palaeoclimatology, Palaeoecology: in press.Google Scholar
Dumitrescu, V, Bolomey, A, Mogoşanu, F. 1982. The prehistory of Romania from the earliest times to 1000 B.C. In: Boardman J, Edwards IES, Hammond NGL, Sollberger E, editors. The Prehistory of the Balkans and the Middle East and the Aegean World, Tenth to Eight Centuries B.C. Cambridge University Press. p 174.Google Scholar
Dumitroaia, G. 2000. Comunităţi preistorice din Nord-Estul Romăniei (de la cultura Cucuteni pană in bronzul mijlociu) (Prehistoric communities from Northeast Romania from Cucuteni Culture to the Bronze Age). Piatra Neamt: Muzeul de Istorie Piatra Neamt. p 335.Google Scholar
Feurdean, A, Liakka, J, Vannière, B., et al. 2013. 12,000-years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): a data-model approach. Quaternary Science Reviews 81:4861.Google Scholar
Feurdean, A, Galka, M, Kuske, E, Tantau, I, Lamentowicz, M, Florescu, G, Liakka, J, Hutchinson, SM, Mulch, A, Hickler, T. 2015. Last millennium hydro-climate variability in Central–Eastern Europe (northern Carpathians, Romania). The Holocene 25:11791192.Google Scholar
Feurdean, A, Florescu, G, Vannière, B, Tanţău, I, O’Hara, R, Pfeiffer, M, Hutchinson, SM, Gałka, M, Moskal-del Hoyo, M, Hickler, T. 2017. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. Forest Ecology and Management 389:1526.Google Scholar
Hajdú-Moharos, J, Sasi, A, Erős, L. 1992. Physical geographical regionalization of Romania. Általános Földtani Szemle 26:181275.Google Scholar
Härke, H. 1982. Early Iron Age Hill settlement in west Central Europe: patterns and developments. Oxford Journal of Archaeology 1:187212.Google Scholar
Harper, TK. 2013. The effect of climatic variability on population dynamics of the Cucuteni-Tripolye cultural complex and the rise of the Western Tripolye giant settlements. Chronika 3:2846.Google Scholar
Hertelendi, E, Csongor, É, Záborszky, L, Molnár, I, Gál, I, Győrffy, M, Nagy, S. 1989. Counting system for high precision C-14 dating. Radiocarbon 31(3):399406.Google Scholar
Hertelendi, E, Kalicz, N, Raczky, P, Horváth, F, Veres, M, Svingor, É, Futó, I, Bartosiewicz, L. 1995. Re-evaluation of the Neolithic in eastern Hungary based on calibrated radiocarbon dates. Radiocarbon 37(2):239244.Google Scholar
Hertelendi, E, Sümegi, P, Szöőr, Gy. 1992. Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 34(3):833839.Google Scholar
Jowsey, PC. 1966. An improved peat sampler. New Phytologist 65(2):245248.Google Scholar
Konert, M, Vandenberghe, J. 1997. Comparison of layer grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44(3):523535.Google Scholar
Lazarovici, C-M. 2010. New data regarding the chronology of the Precucuteni, Cucuteni and Horodiştea-Erbiceni cultures. In: Kalábková P, Kovár B, Pavúk P, Suteková J, editors. PANTA REI. Studies in chronology and cultural development of the SE and Central Europe in Earlier Prehistory presented to Juraj Pavúk on the occasion of his 75 birthday. Studia Archaeologica et Medievalia, XI. Olomouc, Bratislava: Publishing House, Comenius University in Bratislava and Archaeological Center. p 91114.Google Scholar
Longman, J, Ersek, V, Veres, D, Salzmann, U. 2017. Detrital events and hydroclimate variability in the Romanian Carpathians during the mid-to-late Holocene. Quaternary Science Reviews 167:7895.Google Scholar
Magny, M. 2004. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113:6579.Google Scholar
Magyari, EK, Chapman, JC, Passmore, DG, Allen, J. RM, Huntley, JP, Huntley, B. 2010. Holocene persistence of wooded steppe in the Great Hungarian Plain. Journal of Biogeography 37(5):915935.Google Scholar
Mantu, C-M. 1996. Metode de cercetare şi tehnici de datare pentru determinarea cronologiei culturii Cucuteni (Research methods and dating techniques for the Cucuteni culture chronology determination) [PhD thesis]. Iasi: Alex. I. Cuza University. 358 p. In Romanian.Google Scholar
Mantu, C-M. 1998. Cultura Cucuteni. Evoluţie, cronologie, legături (The Cucuteni Culture. Evolution, chronology, links). Piatra Neamt: Muzeul de Istorie Piatra Neamt. p 324.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2):665676.Google Scholar
Moore, PD, Webb, JA, Collinson, ME. 1991. Pollen Analysis. Oxford: Blackwell Scientific Publications.Google Scholar
Náfrádi, K, Jakab, G, Sümegi, P, Szelepcsényi, Z, Törőcsik, T. 2013. Future climate impacts in woodland and forest steppe based on Holocene Paleoclimatic trends, paleobotanical change in central part of the Carpathian Basin (Hungary). American Journal of Plant Sciences 446147:11871203.Google Scholar
Oldfield, F, Thompson, R, Barber, KE. 1978. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections. Science 199:679680.Google Scholar
Pécskay, Z, Edelstein, O, Seghedi Szakacs, A, Kovacs, M, Crihan, M, Bernad, A. 1995. K-Ar datings of Neogene-Quaternary calc-alkaline volcanic rocks in Romania. Acta Vulcanologica 7:5362.Google Scholar
Popescu, D. 1956. Gold processing in Transylvania before the Roman Conquest. In: Materiale şi Cercetări Arheologice II. p 196–250. In Romanian.Google Scholar
Posea, G. 2006. Geografia fizică a României. Partea I. Date generale. Poziţie geografică. Relief. Evaluare teste grilă, Ediţia a II-a. Bucureşti: Editura Fundaţiei România de Mâine. 264, p.Google Scholar
Reille, M. 1992. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoirede Botanique Historique et Palynologie, Marseille.Google Scholar
Reille, M. 1995. Pollen et Spores d’Europe et d’Afrique du Nord. Supplement 1. Marseille: Laboratoirede Botanique Historique et Palynologie.Google Scholar
Reille, M. 1998. Pollen et Spores d’Europe et d’Afrique du Nord. Supplement 2. Marseille: Laboratoirede Botanique Historique et Palynologie.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk-Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon 55(4):18691887.Google Scholar
Rollinson, H. 1993. Using Geochemical Data. London: Longman Press.Google Scholar
Ruszkiczay-Rüdiger, Z, Kern, Z. 2016. Permafrost or seasonal frost? A review of paleoclimate proxies of the last glacial cycle in the East Central European lowlands. Quaternary International 415:241252.Google Scholar
Schnitchen, C, Charman, DJ, Magyari, E, Braun, M, Grigorszky, J, Tóthmérész, B, Molnar, M, Szántó, Zs. 2006. Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands. Journal of Paleolimnology 36:117.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615621.Google Scholar
Sümegi, P, Jakab, G, Majkut, P, Törőcsik, T, Zatykó, Cs. 2009. Middle Age paleoecological and paleoclimatological reconstruction in the Carpathian Basin. Időjárás 113:265298.Google Scholar
Szakács, A, Seghedi, I. 1995. The Cilimani-Gurghiu-Harghita volcanic chain, East Carpathians, Romania: volcanological features. Acta Vulcanologica 7:145153.Google Scholar
Tapody, RO. 2016. The late Quaternary sediment-based enviromental history of a peat-bog from Transylvania [MSc thesis]. University of Szeged. p 41. In Hungarian.Google Scholar
Thompson, R, Battarbee, RW, O’Sullivan, PE, Oldfield, F. 1975. Magnetic susceptibility of lake sediments. Limnology and Oceanography 20(5):687698.Google Scholar
Tóth, M, Magyari, EK, Buczkó, K, Braun, M, Panagiotopoulos, K, Heiri, O. 2015. Chironomid-inferred Holocene temperature changes in the South Carpathians (Romania). The Holocene 25:569582.Google Scholar
Troels-Smith, J. 1955. Karakterisering af Lose Jordater. Danmarks Geologiske Undersogelse 4(3):173.Google Scholar
Vandenberghe, J, French, HM, Gorbunov, A, Marchenko, S, Velichko, AA, Jin, H, Cui, Z, Zhang, T, Wan, X. 2014. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43(3):652666.Google Scholar
Váradi, PP, Lővey, L. 2000. Transylvania, Székely Land and Homoródi Hills. Veszprém: PéterPál Press. p 104.Google Scholar
Vasilescu, A, Constantinescu, B, Bugoi, R. 2011. Micro-SR-XRF studies of gold provenance in archaeology. Romanian Journal of Physics 56:366372.Google Scholar
Wells, PS. 2010. The Iron Age. In: Milisauskas S, editor. European Prehistory: a Survey (Interdisciplinary Contributions to Archaeology). Springer. p 405464.Google Scholar
Willis, KJ, Sümegi, P, Braun, M, Bennett, KD, Tóth, A. 1998. Prehistoric land degradation in Hungary: Who, how and why? Antiquity 72:101113.Google Scholar
Wood, GD, Gabriel, AM, Lawson, JC. 1996. Chapter 3. Palynological techniques – processing and microscopy. In: Jansonius J, McGregor DC, editors. Palynology: Principles and Applications. Dallas (TX): American Association of Stratigraphic Palynologists Foundation. p 1:29–50.Google Scholar
Zar, J. 1990. Biostatistical Analysis. New York: Englewood Cliffs.Google Scholar
Supplementary material: Image

Tapody et al. supplementary material

Tapody et al. supplementary material 1

Download Tapody et al. supplementary material(Image)
Image 791.8 KB
Supplementary material: Image

Tapody et al. supplementary material

Tapody et al. supplementary material 2

Download Tapody et al. supplementary material(Image)
Image 954.7 KB
Supplementary material: Image

Tapody et al. supplementary material

Tapody et al. supplementary material 3

Download Tapody et al. supplementary material(Image)
Image 805 KB