Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T03:54:12.015Z Has data issue: false hasContentIssue false

Radionuclide Studies of Stony Meteorites from Hot Deserts

Published online by Cambridge University Press:  09 February 2016

A J Timothy Jull
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA NSF-Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA Institute of Nuclear Research (ATOMKI), Hungarian Academy of Sciences, 4026 Debrecen, Hungary
Marlène D Giscard
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, United Kingdom
Aurore Hutzler
Affiliation:
Centre Européen de Recherche et d'Enseignement des Gésciences et de l'Environnement (CEREGE), 13545 Aix-en-Provence, France
Caitlin J Schnitzer
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA Arizona Space Grant College Consortium, Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA
David Zahn
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA Arizona Space Grant College Consortium, Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA
George S Burr
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA Department of Geosciences, National Taiwan University, Taipei, Taiwan
Lanny R McHargue
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA NSF-Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA
Dolores Hill
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA

Abstract

We summarize the use of radiocarbon produced by spallation in meteorites in space to determine their terrestrial age or residence time. This “age” gives us important information as it can be compared to the rates of weathering and infall of meteorites. The processes that affect the collection of meteorites in a given area can be related to the rates of infall of new meteorites, and the rate of removal by chemical weathering and physical erosion.

Type
Cosmogenic Nuclides
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Kathiri, A, Hofmann, BA, Jull, AJT, Gnos, E. 2005. Weathering of meteorites from Oman: correlation of chemical/mineralogical weathering proxies with 14C terrestrial ages and the influence of soil chemistry. Meteoritics & Planetary Science 40(8):1215–39.CrossRefGoogle Scholar
Arnold, JR, Honda, M, Lal, D. 1961. Record of cosmic-ray intensity in the meteorites. Journal of Geophysical Research 66(10):3519–31.CrossRefGoogle Scholar
Bland, PA, Smith, TB, Jull, AJT, Berry, FJ, Bevan, AWR, Cloudt, S, Pillinger, CT. 1996. The flux of meteorites to the Earth over the last 50,000 years. Monthly Notices of the Royal Astronomical Society 283:551–65.CrossRefGoogle Scholar
Bland, PA, Jull, AJT, Bevan, AWR, Berry, FJ, Thornley, DM, Astin, TR, Britt, DT, Pillinger, CT. 1998. Climate and rock weathering: a study of terrestrial age dated ordinary chondritic meteorites from hot desert regions. Geochimica et Cosmochimica Acta 62(18): 3169–84.CrossRefGoogle Scholar
Bland, PA, Bevan, AWR, Jull, AJT. 2000. Ancient meteorite finds and the Earth's surface environment. Quaternary Research 53(2):131–42.CrossRefGoogle Scholar
Borovika, J, Spurný, P. 2008. The Carancas meteorite impact - encounter with a monolithic asteroid. Astronomy and Astrophysics 485(2):L1L4.CrossRefGoogle Scholar
Eugster, O, Herzog, GF, Marti, K, Caffee, MW. 2006. Irradiation records, cosmic-ray exposure ages and transfer times of meteorites. In: Lauretta, D, editor. Meteorites and the Early Solar System. Tucson: University of Arizona Press. p 829–51.Google Scholar
Ferko, TE, Wang, MS, Hillegonds, DJ, Lipschutz, ME, Hutchison, R, Franke, L, Scherer, P, Schultz, L, Benoit, PH, Sears, DWG, Singhvi, AK, Bhandari, N. 2002. The irradiation history of the Ghubara (L5) regolith breccia. Meteoritics & Planetary Science 37(3):311–27.CrossRefGoogle Scholar
Folco, L, Welten, KC, Jull, AJT, Nishiizumi, K, Zeoli, A. 2006. Meteorites constrain the age of Antarctic ice at the Frontier Mountain blue ice field (northern Victoria Land). Earth and Planetary Science Letters 248(1–2): 209–16.CrossRefGoogle Scholar
Franchi, IA, Deslisle, G, Jull, AJT, Hutchison, R, Pillinger, CT. 1995. An assessment of the potential of the Jiddat al Harasis and Rub' al Khali regions of Southern Arabia. In: Schultz, L, Annexstad, JO, Zolensky, ME, editors. Workshop on Meteorites from Cold and Hot Deserts, Proceedings of the Workshop held 20–22 July, 1994 at Nördlingen, Germany. Lunar and Planetary Institute Technical Report 95-02. Houston: Lunar and Planetary Institute. p 2931.Google Scholar
Gattacceca, J, Valenzuela, M, Uehara, M, Jull, AJT, Giscard, M, Rochette, P, Braucher, R, Suavet, C, Gounelle, M, Morata, D, Munayco, P, Bourot-Denise, M, Bourles, D, Demory, F. 2011. The densest meteorite collection area in hot deserts: the San Juan meteorite field (Atacama Desert, Chile). Meteoritics & Planetary Science 46(9):1276–87.CrossRefGoogle Scholar
Gnos, E, Lorenzetti, S, Eugster, O, Jull, AJT, Hofman, BA, Al-Kathiri, A, Eggiman, M. 2009. The Jiddat al Harasis 073 strewn field, Sultanate of Oman. Meteoritics & Planetary Science 44(3):375–87.CrossRefGoogle Scholar
Hezel, DC, Schlüter, J, Kallweit, H, Jull, AJT, Al-Fakeer, OY, Al-Shamsi, M, Strekopytov, S. 2011. Meteorites from the United Arab Emirates: description, weathering and terrestrial ages. Meteoritics & Planetary Science 46(2):327–36.CrossRefGoogle Scholar
Hofmann, BA, Gnos, E, Zurfluh, FJ, Giscard, MD, Jull, AJT, Weber, P, Al Busaidi, SH. 2009. Oman meteorite search project 2001–2009: status and summary. Meteoritics & Planetary Science 44: abstract #5225.Google Scholar
Jull, AJT. 2001. Terrestrial ages of meteorites. In: Peuker-Ehrenbrink, B, Schmitz, B, editors. Accretion of Extraterrestrial Matter Throughout Earth's History. New York: Kluwer Academic/Plenum Publishers. p 241–66.Google Scholar
Jull, AJT. 2006. Terrestrial ages of meteorites. In: Lauretta, D, editor. Meteorites and the Early Solar System. Tucson: University of Arizona Press. p 889905.CrossRefGoogle Scholar
Jull, AJT, Wlotzka, F, Palme, H, Donahue, DJ. 1990. Distribution of terrestrial age and petrologic type of meteorites from western Libya. Geochimica et Cosmochimica Acta 54(10):2895–8.CrossRefGoogle Scholar
Jull, AJT, Donahue, DJ, Cielaszyk, E, Wlotzka, F. 1993. 14C terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA). Meteoritics 28(2):188–95.CrossRefGoogle Scholar
Jull, AJT, Cloudt, S, Cielaszyk, E. 1998a. 14C terrestrial ages of meteorites from Victoria Land, Antarctica and the infall rates of meteorites. In: Grady, MM, Hutchison, R, McCall, GJ, Rothery, DA, editors. Meteorites: Flux with Time and Impact Effects. Special Publication 140. London: Geological Society of London. p 7591.Google Scholar
Jull, AJT, Cloudt, S, Donahue, DJ, Sisterson, JM, Reedy, RC, Masarik, J. 1998b. 14C depth profiles in Apollo 15 and 17 cores and lunar rock 68815. Geochimica et Cosmochimica Acta 62(17):3025–36.CrossRefGoogle Scholar
Jull, AJT, Lal, D, Burr, GS, Bland, PA, Bevan, AWR, Beck, JW. 2000. Radiocarbon beyond this world. Radiocarbon 42(1):151–72.CrossRefGoogle Scholar
Jull, AJT, Leclerc, MD, Biddulph, DL, McHargue, LR, Burr, GS, Al-Kathiri, A, Gnos, E, Hofmann, B. 2008. Radionuclide studies of meteorites from Ramlat al Wahibah and other Omani desert locations. Meteoritics & Planetary Science 43: abstract #5020.Google Scholar
Jull, AJT, McHargue, LR, Bland, PA, Greenwood, RC, Bevan, AWR, Kim, KJ, Giscard, MD, LaMotta, SE, Johnson, JA. 2010. Terrestrial ages of meteorites from the Nullarbor region, Australia, based on 14C and 14C-10Be measurements. Meteoritics & Planetary Science 45(8):1271–83.CrossRefGoogle Scholar
Kring, DA, Jull, AJT, McHargue, LR, Bland, PA, Hill, DH, Berry, FJ. 2001. Gold Basin meteorite strewn field, Mojave Desert: relict of a small late Pleistocene impact event. Meteoritics & Planetary Science 36(8): 1057–66.CrossRefGoogle Scholar
Leya, I, Masarik, J. 2009. Cosmogenic nuclides in stony meteorites revisited. Meteoritics & Planetary Science 44(7):1061–86.CrossRefGoogle Scholar
Leya, I, Lange, H-J, Neumann, S, Wieler, R, Michel, R. 2000. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles. Meteoritics & Planetary Science 35(2):259–86.CrossRefGoogle Scholar
Lifton, NA, Jull, AJT, Quade, J. 2001. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz. Geochimica et Cosmochimica Acta 65(12):1953–69.CrossRefGoogle Scholar
McHargue, LR, Damon, P, Donahue, DJ. 1995. Enhanced cosmic-ray production of 10Be coincident with the Mono Lake and Laschamp geomagnetic excursions. Geophysics Research Letters 22(5):659–62.CrossRefGoogle Scholar
Nishiizumi, K, Caffee, MW. 2006. Constraining the number of lunar and martian meteorite falls. Meteoritics & Planetary Science 41: abstract #5368.Google Scholar
Nishiizumi, K, Nagao, K, Caffee, MW, Jull, AJT, Irving, AJ. 2011. Cosmic-ray exposure chronologies of depleted olivine-phyric shergottites. Lunar and Planetary Science 42: abstract #2371.Google Scholar
Reedy, RC. 2004. Recent advances in studies of meteorites using cosmogenic radionuclides. Nuclear Instruments and Methods in Physics Research B 223–224: 587–90.Google Scholar
Schultz, L, Franke, L, Bevan, AWR. 2005. Noble gases in ten Nullarbor chondrites: exposure ages, terrestrial ages and weathering effects. Meteoritics & Planetary Science 40(5):659–64.CrossRefGoogle Scholar
Schwenzer, S, Anand, M, Franchi, IA, Gibson, JM, Greenwood, RC, Hammonds, S, Haubold, R, Hermann, S, Kelley, SP, Ott, U, Tindle, AG. 2012. Cold desert alteration of Martian meteorites: mixed news from noble gases, trace elements and oxygen isotopes. Lunar and Planetary Science 43: abstract #1954.Google Scholar
Suess, HE, Wänke, H. 1962. Radiocarbon content of twelve stony meteorites and one iron meteorite. Geochimica et Cosmochimica Acta 26(4):475–80.CrossRefGoogle Scholar
Tancredi, G, Ishitsuka, J, Schultz, PH, Harris, RS, Brown, P, Revelle, DO, Antier, K, Le Pichon, A, Rosales, D, Vidal, E, Varela, ME, Sanchez, L, Benavente, S, Bojorquez, J, Cabezas, D, Dalmau, A. 2009. A meteorite crater on Earth formed on September 15, 2007: the Carancas hypervelocity impact. Meteoritics & Planetary Science 44(12):1967–84.CrossRefGoogle Scholar
Welten, KC, Nishiizumi, K, Masarik, J, Caffee, MW, Jull, AJT, Klandrud, SE, Wieler, R. 2001. Cosmic-ray exposure history of two Frontier Mountain H-chondrite showers from spallation and neutron-capture products. Meteoritics & Planetary Science 36(2):301–17.CrossRefGoogle Scholar
Welten, KC, Caffee, MW, Leya, I, Masarik, J, Nishiizumi, K, Wieler, R. 2003. Noble gases and cosmogenic radionuclides in the Gold Basin L4 chondrite shower: thermal history, exposure history, and pre-atmospheric size. Meteoritics & Planetary Science 38(1): 157–74.CrossRefGoogle Scholar
Welten, KC, Nishiizumi, K, Finkel, RC, Hillegonds, DJ, Jull, AJT, Franke, L, Schultz, L. 2004. Exposure history and terrestrial ages of ordinary chondrites from the Dar al Gani region, Libya. Meteoritics & Planetary Science 39(3):481–98.CrossRefGoogle Scholar
Welten, KC, Nishiizumi, K, Caffee, MW, Hillegonds, DJ, Johnson, JA, Jull, AJT, Wieler, R, Folco, L. 2006. Terrestrial ages, pairing and concentration mechanisms of Antarctic chondrites from Frontier Mountain, northern Victoria Land. Meteoritics & Planetary Science 41(7):1081–94.CrossRefGoogle Scholar
Welten, KC, Nishiizumi, K, Caffee, MW. 2007. Terrestrial age survey of Antarctic meteorites. Lunar and Planetary Science 38: abstract #2345.Google Scholar
Wlotzka, F, Jull, AJT, Donahue, DJ. 1995. Carbon-14 terrestrial ages of meteorites from Acfer, Algeria. Lunar and Planetary Institute Technical Report 95-02. Houston: Lunar and Planetary Institute. p 72–3.Google Scholar
Zurfluh, FJ, Hofmann, BA, Gnos, E, Eggenberger, U, Villa, IM, Greber, ND, Jull, AJT. 2011. New insights into the strontium contamination of meteorites. Meteoritics & Planetary Science 46: abstract #5229.Google Scholar