Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T13:15:41.877Z Has data issue: false hasContentIssue false

Reconstruction of the 14C Production Rate from Measured Relative Abundance

Published online by Cambridge University Press:  18 July 2016

Ilya G Usoskin
Affiliation:
Sodankylä Geophysical Observatory (Oulu unit), P.O. Box 3000, FIN-90014 University of Oulu, Finland. Email: Ilya.Usoskin@oulu.fi
Bernd Kromer
Affiliation:
Heidelberger Akademie der Wissenschaften, Institut für Umweltphysik, INF 229, D-69120 Heidelberg, Germany. Email: Bernd.Kromer@iup.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new method is presented for the reconstruction of the radiocarbon production rate from the measured relative abundance of Δ14C. The method treats the carbon cycle as a linear Fourier filter and thus allows for the correct and unambiguous inversion of the carbon cycle. The 14C production rate, as reconstructed by the Fourier filter method, agrees with the results obtained by the traditional iteration method. Since the 2 methods use completely different approaches, this verifies the validity of the reconstruction. The composite series is presented, based on both methods and their systematic uncertainties.

Type
Articles
Copyright
Copyright © 2005 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alanko, K, Usoskin, IG, Mursula, K, Kovaltsov, GA. 2003. Effective energy of Neutron Monitor. Proceedings of the 28th International Cosmic Ray Conference. Tokyo: Universal Academy Press. p 3901–4.Google Scholar
Bard, E, Raisbek, GM, Yiou, F, Jouzel, J. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth and Planetary Science Letters 150: 453–62.CrossRefGoogle Scholar
Bode, HW. 1945. Network Analysis and Feedback Amplifier Design. New York: Van Nostrand. 577 p.Google Scholar
Bond, G, Kromer, B, Beer, J, Muscheler, R, Evans, M, Showers, W, Hofmann, S, Lotti-Bond, R, Hajdas, I, Bonani, G. 2001. Persistent solar influence on North Atlantic surface circulation during the Holocene. Science 294:2130–6.CrossRefGoogle Scholar
Born, M. 1994. Optimierung eines Messsystems zur 14C-Aktivitätsbestimmung mit Proportionalzählrohren [PhD dissertation]. Heidelberg: University of Heidelberg. 81 p.Google Scholar
Castagnoli, G, Lal, D. 1980. Solar modulation effects in terrestrial production of carbon-14. Radiocarbon 22(2):133–58.CrossRefGoogle Scholar
Goslar, T. 2001. Absolute production of radiocarbon and the long-term trend of atmospheric radiocarbon. Radiocarbon 43(2B):743–9.CrossRefGoogle Scholar
Jenkins, GM, Watts, DG. 1969. Spectral Analysis and Its Applications. London: Holden-Day. 525 p.Google Scholar
Kocharov, GE, Arslanov, KA, Dergachev, VA, Tleugaliev, SK, Chernov, SB. 1977. Cyclic activity of the sun and the radiocarbon content in tree rings. Soviet Astronomical Letters 3(5):257–8.Google Scholar
Kocharov, GE, Vasilev, VA, Dergachjev, VA, Ostryakov, VM. 1983. An 8000-year sequence of galactic cosmic-ray fluctuations. Soviet Astronomical Letters 9(2): 110–2.Google Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1974. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2):168–92.Google Scholar
Siegenthaler, U, Heimann, M, Oeschger, H. 1980. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22(2):177–91.Google Scholar
Stuiver, M, Braziunas, TF, Becker, B, Kromer, B. 1991. Climatic, solar, oceanic, and geomagnetic influences on Late Glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35:124.Google Scholar
Stuiver, M, Quay, P. 1980. Patterns of atmospheric 14C changes. Radiocarbon 22(2):166–76.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon content in modern wood. Science 122:415–7.Google Scholar