Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T07:22:56.509Z Has data issue: false hasContentIssue false

Review of Tropospheric Bomb 14C Data for Carbon Cycle Modeling and Age Calibration Purposes

Published online by Cambridge University Press:  18 July 2016

Quan Hua*
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234, Australia
Mike Barbetti
Affiliation:
NWG Macintosh Centre for Quaternary Dating, Madsen Building F09, University of Sydney, New South Wales 2006, Australia. Also: Advanced Centre for Queensland University Isotope Research Excellence (ACQUIRE), Richards Building, University of Queensland, Brisbane, Queensland 4072, Australia
*
Corresponding author. Email: qhx@ansto.gov.au.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comprehensive published radiocarbon data from selected atmospheric records, tree rings, and recent organic matter were analyzed and grouped into 4 different zones (three for the Northern Hemisphere and one for the whole Southern Hemisphere). These 14C data for the summer season of each hemisphere were employed to construct zonal, hemispheric, and global data sets for use in regional and global carbon model calculations including calibrating and comparing carbon cycle models. In addition, extended monthly atmospheric 14C data sets for 4 different zones were compiled for age calibration purposes. This is the first time these data sets were constructed to facilitate the dating of recent organic material using the bomb 14C curves. The distribution of bomb 14C reflects the major zones of atmospheric circulation.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Berger, R, Libby, WF. 1966. UCLA radiocarbon dates V. Radiocarbon 8(1):467–97.CrossRefGoogle Scholar
Berger, R, Libby, WF. 1967. UCLA radiocarbon dates VI. Radiocarbon 9(1):477504.CrossRefGoogle Scholar
Berger, R, Libby, WF. 1968. UCLA radiocarbon dates VIII. Radiocarbon 10(2):402–16.Google Scholar
Berger, R, Libby, WF. 1969. UCLA radiocarbon dates IX. Radiocarbon 11(1):194209.Google Scholar
Berger, R, Fergusson, GJ, Libby, WF. 1965. UCLA radiocarbon dates IV. Radiocarbon 7(1):336–71.Google Scholar
Berger, R, Jackson, TB, Michael, R, Suess, HE. 1987. Radiocarbon content of tropospheric CO2 at China Lake, California 1977–1983. Radiocarbon 29(1):1823.CrossRefGoogle Scholar
Bevington, PR, Robinson, DK. 1992. Data Reduction and Error Analysis for the Physical Sciences. 2nd edition. New York: McGraw-Hill Inc.Google Scholar
Bien, GS, Rakestraw, NW, Suess, HE. 1960. Radiocarbon concentration in the Pacific Ocean water. Tellus V12: 436–43.Google Scholar
Broecker, WS, Gerard, RS, Ewing, M, Heezen, BC. 1960. Natural radiocarbon in the Atlantic Ocean. Journal of Geophysical Research 65:2903–31.Google Scholar
Broecker, WS, Peng, TH, Engh, R. 1980. Modeling the carbon system. Radiocarbon 22(3):565–98.CrossRefGoogle Scholar
Cain, WF, Suess, HE. 1976. Carbon-14 in tree rings. Journal of Geophysical Research 81(21):3688–94.CrossRefGoogle Scholar
Druffel, EM, Suess, HE. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88(2):1271–80.CrossRefGoogle Scholar
Eichinger, L, Rauert, W, Wolf, M. 1980. 14C-Messungen an Weinen- und Baumringen. Bericht der Gesellschaft fur Strahlen- und Umweltforschung R 250:105–18.Google Scholar
Enting, IG. 1982. Nuclear weapons data for use in carbon cycle modeling. CSIRO Division of Atmospheric Physics Technical Paper No. 44. Melbourne: CSIRO.Google Scholar
Feely, HW, Biscaye, PE, Davidson, B, Seitz, H. 1966a. Eleventh progress report on Project Stardust. DASA report number 1821. Westwood, New Jersey: Isotopes, Inc.Google Scholar
Feely, HW, Davidson, B, Friend, JP, Lagomarsino, RJ, Leo, MWM. 1963. Ninth quarterly report on Project Stardust. DASA report number 1309. Westwood, New Jersey: Isotopes, Inc.Google Scholar
Feely, HW, Katzman, D, Tucek, CS. 1966b. Sixteenth progress report on Project Stardust. DASA report number 1905. Westwood, New Jersey: Isotopes, Inc.Google Scholar
Hertelendi, E, Csongor, E. 1982. Anthropogenic 14C excess in the troposphere between 1951 and 1978 measured in tree rings. Radiochemical and Radioanalytical Letters 56(2):103–10.Google Scholar
Hua, Q, Barbetti, M. 2003. Influences of atmospheric circulation on regional atmospheric 14C. In: Abstracts of the 18th International Radiocarbon Conference, 1–5 September 2003, Wellington, New Zealand. p 100.Google Scholar
Hua, Q, Barbetti, M, Zoppi, U. 2004a. Radiocarbon in annual tree rings from Thailand during the pre-bomb period, AD 1938–1954. Radiocarbon 46(2):925–32.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Jacobsen, GE, Zoppi, U, Lawson, EM. 2000. Bomb radiocarbon in annual tree rings from Thailand and Tasmania. Nuclear Instruments and Methods in Physics Research B 172:359–65.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Worbes, M, Head, J, Levchenko, VA. 1999. Review of radiocarbon data from atmospheric and tree-ring samples for the period AD 1945–1997. IAWA Journal 20(3):261–83.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Zoppi, U, Chapman, DM, Thomson, B. 2003. Bomb radiocarbon in tree rings from northern New South Wales, Australia: implications for dendrochronology, atmospheric transport, and air-sea exchange of CO2 . Radiocarbon 45(3):431–47.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Zoppi, U, Fink, D, Watanasak, M, Jacobsen, GE. 2004b. Radiocarbon in tropical tree rings during the Little Ice Age. Nuclear Instruments and Methods in Physics Research B 223–224:489–94.Google Scholar
Kikata, Y, Yonenobu, H, Morishita, F, Hattori, Y. 1992. 14C concentrations in tree stems. Bulletin of the Nagoya University Furukawa Museum 8:41–6. In Japanese.Google Scholar
Kikata, Y, Yonenobu, H, Morishita, F, Hattori, Y, Marsoem, SN. 1993. 14C concentrations in tree stems I. Mokuzai Gakkaishi 39(3):333–7. In Japanese.Google Scholar
Kolesnikov, NV, Gorshkova, IA, Biryulin, YuF. 1970. Variation of the radiocarbon concentration in the atmosphere during the period 1957–1968 (according to dendrological data). Atmospheric and Oceanic Physics 6(6):647–9.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.CrossRefGoogle Scholar
Levin, I, Kromer, B, Francey, RJ. 1996. Continuous measurements of 14C in atmospheric CO2 at Cape Grim. In: Francey, RJ, Dick, AL, Derek, N, editors. Baseline Atmospheric Program Australia 1994–1995. Melbourne: CSIRO. p 106–7.Google Scholar
Levin, I, Kromer, B, Francey, RJ. 1999. Continuous measurements of 14C in atmospheric CO2 at Cape Grim, 1995–1996. In: Grass, JL, Derek, N, Tindale, NW, Dick, AL, editors. Baseline Atmospheric Program Australia 1996. Melbourne: Bureau of Meteorology and CSIRO Atmospheric Research. p 8990.Google Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, D, Vogel, JC, Münnich, KO. 1985. 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1):119.Google Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, D, Vogel, JC, Münnich, KO. 1994. Δ14CO2 records from two sites in central Europe. In: Boden, TA, Kaiser, DP, Sepanski, RJ, Stoss, FW, editors. Trends 93—A Compendium of Data on Global Change and online updates. Oak Ridge, Tennessee, USA: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. p 203–22. <http://cdiac.esd.ornl.gov/trends/co2/cent.htm>.Google Scholar
Linacre, E, Geerts, B. 1997. Climates and Weather Explained. London: Routledge.CrossRefGoogle Scholar
Manning, MR, Melhuish, WH. 1994. Δ14CO2 record from Wellington. In: Boden, TA, Kaiser, DP, Sepanski, RJ, Stoss, FW, editors. Trends 93—A Compendium of Data on Global Change and online updates. Oak Ridge, Tennessee, USA: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. p 173202. <http://cdiac.esd.ornl.gov.trends/co2/welling.html>.Google Scholar
Manning, MR, Lowe, DC, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGrill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):3758.CrossRefGoogle Scholar
Meijer, HAJ, van der Plicht, J, Gislefoss, JS, Nydal, R. 1995. Comparing long-term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37(1):3950.CrossRefGoogle Scholar
Muraki, Y, Kocharov, G, Nishiyama, T, Naruse, Y, Murata, T, Masuda, K, Arslanov, KhA. 1998. The new Nagoya radiocarbon laboratory. Radiocarbon 40(1):177–82.Google Scholar
Murphy, JO, Lawson, EM, Fink, D, Hotchkis, MAC, Hua, Q, Jacobsen, GE, Smith, AM, Tuniz, C. 1997. 14C AMS measurements of the bomb pulse in N- and S-Hemisphere tropical trees. Nuclear Instruments and Methods in Physics Research B 123:447–50.CrossRefGoogle Scholar
Nakamura, T, Nakai, N, Ohishi, S. 1987a. Applications of environmental 14C measured by AMS as a carbon tracer. Nuclear Instruments and Methods in Physics Research B 29:355–60.Google Scholar
Nakamura, T, Nakai, N, Kimura, M, Ohishi, S, Hattori, Y, Kikata, Y. 1987b. Variations in 14C concentrations of tree rings (1945–1983). Chikyu-Kagaku (Geochemistry) 21:712. In Japanese.Google Scholar
Nydal, R. 1968. Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research 73(12):3617–35.Google Scholar
Nydal, R, Gislefoss, JS. 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38(3):389406.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6):3621–42.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1996. Carbon-14 measurement in atmospheric CO2 from Northern and Southern Hemisphere sites, 1962–1993. Oak Ridge, Tennessee, USA: Carbon Dioxide Information Analysis Center–World Data Center-A for Atmospheric Trace Gases.Google Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2):168–92.Google Scholar
Park, JH, Kim, JC, Cheoun, MK, Kim, IC, Youn, M, Liu, YH, Kim, ES. 2002. 14C Level at Mt Chiak and Mt Kyeryong in Korea. Radiocarbon 44(2):559–66.CrossRefGoogle Scholar
Rafter, TA. 1968. Carbon-14 measurements in the South Pacific and Antarctic Oceans. New Zealand Journal of Science VII:551–89.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004a. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon, this issue.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, SW, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004b. IntCal04 terrestrial radiocarbon age calibration, 26–0 cal kyr B P. Radiocarbon, this issue.Google Scholar
Searson, M, Pearson, S. 2001. A new technique in dendro-ecology using Callitris. In: Dargavel, J, Hart, D, Libbis, B, editors. Perfumed Pineries: Environmental History of Australian Callitris Forest. Centre for Resource and Environmental Studies, Australian National University, Canberra. p 3947.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):353–63.Google Scholar
Tans, P. 1981. A compilation of bomb 14C data for use in global carbon model calculations. In: Bolin, B, editor. Carbon Cycle Modeling (Scope 16). New York: John Wiley and Sons. p 131–57.Google Scholar
Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. U S Atomic Energy Commission Report HASL-243.Google Scholar
Vogel, JC, Marais, M. 1971. Pretoria radiocarbon dates I. Radiocarbon 13(2):378–94 and regular updates.Google Scholar
Wild, E, Golser, R, Hille, P, Kutschera, W, Priller, A, Puchegger, S, Rom, W, Steier, P. 1998. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator. Radiocarbon 40(1):273–81.Google Scholar
Willkomm, H, Erlenkeuser, H. 1968. University of Kiel radiocarbon measurements III. Radiocarbon 10(2): 328–32.Google Scholar
Worbes, M, Junk, WJ. 1989. Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503–7.CrossRefGoogle Scholar
Yang, X, North, R, Rommey, C. 2000. CMR Nuclear Explosion Database (revision 3). CMR Technical Report CMR-00/16. Center for Monitoring Research, Arlington, Virginia, USA. <http://www.pidc.org/rdss/nucex/report/explosion.pdf>.Google Scholar
Zoppi, U, Skopec, Z, Skopec, J, Jones, G, Fink, D, Hua, Q, Jacobsen, G, Tuniz, C, Williams, A. 2004. Forensic applications of 14C bomb-pulse dating. Nuclear Instruments and Methods in Physics Research B 223–224:770–5.Google Scholar