Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:49:21.288Z Has data issue: false hasContentIssue false

A Revised Radiocarbon Chronology of the Aceramic Shell Midden of Ra’s Al-Hamra 6 (Muscat, Sultanate of Oman): Implication For Occupational Sequence, Marine Reservoir Age, and Human Mobility

Published online by Cambridge University Press:  10 February 2016

Antoine Zazzo*
Affiliation:
Unité Mixte de Recherche 7209 “Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements,” Centre National de la Recherche Scientifique, Muséum national d’histoire naturelle, Sorbonne Universités, CP 56, 55 rue Buffon, F-75005 Paris, France.
Olivia Munoz
Affiliation:
Université Paris 1 Panthéon-Sorbonne, UMR 7041, Archéologie et Sciences de l’Antiquité, Equipe “du Village à l’Etat au Proche et Moyen Orient,” Maison de l’Archéologie et de l’Ethnologie, F-92023 Nanterre, France.
Emilie Badel
Affiliation:
Université Paris 1 Panthéon-Sorbonne, UMR 7041, Archéologie et Sciences de l’Antiquité, Equipe “du Village à l’Etat au Proche et Moyen Orient,” Maison de l’Archéologie et de l’Ethnologie, F-92023 Nanterre, France.
Irène Béguier
Affiliation:
Service départemental d’archéologie du Calvados, 9, rue Saint-Laurent, BP 20520, 14035 Caen, Cedex 1, France.
Francesco Genchi
Affiliation:
Università di Bari, Dipartimento dei Beni Culturali e Scienze del Linguaggio, Palazzo Ateneo, Piazza Umberto I 1, I-70125 Bari, Italy.
Lapo Gianni Marcucci
Affiliation:
Université Paris 1 Panthéon-Sorbonne, UMR 7041, Archéologie et Sciences de l’Antiquité, Equipe “du Village à l’Etat au Proche et Moyen Orient,” Maison de l’Archéologie et de l’Ethnologie, F-92023 Nanterre, France. Università di Bologna, Dipartimento di Archeologia, Piazza San Giovanni in Monte 2, 40124 Bologna, Italy.
*
*Corresponding author. Email: zazzo@mnhn.fr.

Abstract

Ra’s al-Hamra 6 (RH-6) is one of the earliest stratified archaeological sites along the eastern littoral of the Arabian Peninsula. This shell midden was radiocarbon dated to the 6th–5th millennium cal BC, but the majority of the dates were obtained before the advent of accelerator mass spectrometry (AMS) 14C dating and suffer from large uncertainties. In addition, most of these dates were obtained on marine and mangrove shells and required correction for local variations from the global average marine 14C reservoir age (MRA). This proved difficult because no consensus value exists for this period in the area. Recent excavations at RH-6 offered the opportunity to redate this important site in order to precisely determine its occupation history and later use as a graveyard, and establish the marine reservoir effect for this time period. Thirty-eight samples of charcoal, shells, and human bone apatite were selected for 14C dating. Bayesian modeling of the 14C dates suggests that the formation of the shell midden spanned ~1 millennium, between the mid-6th and the mid-5th millennium cal BC. Positive and consistent ΔR values were calculated throughout the entire sequence, ranging from 99±27 to 207±43 14C yr. At the beginning of the 4th millennium cal BC, RH-6 was used as a graveyard, as suggested by the 14C dating of a shell in strict association with an individual buried at the surface of the site. 14C dating of human bone apatite allowed us to calculate that 89% of this individual’s diet derived from marine resources. This finding confirms previous observations showing the overwhelming presence of marine and mangrove-dwelling species in the faunal and charcoal assemblage, and implies a low mobility, or mobility restricted to the coast for this population during the 4th millennium cal BC.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, J-F, Charpentier, V, Crassard, R, Martin, C, Davtian, G, Lopez-Saez, JA. 2013. The dynamics of mangroves ecosystems, changes in sea level and the strategies of Neolithic settlements along the coast of Oman (6000–3000 cal. BC). Journal of Archaeological Science 40(7):30873104.Google Scholar
Biagi, P. 1985. Excavation at the aceramic shell midden of RH-6, Qurm, Muscat. East and West 35(4):410415.Google Scholar
Biagi, P. 1994. A radiocarbon chronology for the aceramic shell-middens of coastal Oman. Arabian Archaeology and Epigraphy 5:1731.Google Scholar
Biagi, P. 1999. Excavations at the shell-midden of RH6 1986–1988 (Muscat, Sultanate of Oman). Al-Rafidan XX:5784.Google Scholar
Biagi, P. 2013. The shell middens of Las Bela coast and the Indus delta (Arabian Sea, Pakistan). Arabian Archaeology and Epigraphy 24(1):914.Google Scholar
Biagi, P, Nisbet, R. 1989. Some aspects of the 1982–1985 excavations at the aceramic coastal settlement of RH5 at Qurm (Muscat, Sultanate of Oman). In: Costa PM, Tosi M, editors. Oman Studies. Rome: IsMEO, Serie orientale Romana 9. p 3146.Google Scholar
Biagi, P, Nisbet, R. 1992. Environmental history and plant exploitation at the aceramic sites of RH5 and RH6 near the mangrove swamp of Qurm (Muscat - Oman). Bulletin de la Société Botanique de France. Actualités Botaniques 139(2–4):571578.Google Scholar
Biagi, P, Nisbet, R. 1999. The shell-midden sites of RH5 and RH6 -Muscat, Sultanate of Oman). Archaeologia Polona 37:3147.Google Scholar
Biagi, P, Nisbet, R. 2006. The prehistoric fisher-gatherers of the western coast of the Arabian Sea: a case of seasonal sedentarization? World Archaeology 38(2):220258.CrossRefGoogle Scholar
Biagi, P, Travers, RA. 1985. Non-mammalian osteological remains and fishing implements at RH-5 and RH-6, Muscat. East and West 35(4):407410.Google Scholar
Biagi, P, Torke, W, Tosi, M, Uerpmann, H-P. 1984. Qurum: a case study of coastal archaeology in northern Oman. World Archaeology 16(1):4361.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.Google Scholar
Charpentier, V, Marquis, P, Pellé, E. 2003. La nécropole et les derniers horizons Ve millénaire du site de Gorbat al-Mahar (Suwayh, SWY-1, Sultanat d’Oman): premiers résultats. Proceedings of the Seminar for Arabian Studies 33(33):1119.Google Scholar
Hedges, REM, Pettitt, PB, Bronk Ramsey, C, Van Klinken, GJ. 1997. Radiocarbon dates from the Oxford AMS System: Archaeometry datelist 23. Archaeometry 39(2):247262.Google Scholar
Kutterer, AU. 2010. Remarks on Neolithic burial customs in south-east Arabia. In: Weeks L, editor. Death and Burial in Arabia and Beyond, BAR International Series 2107. Oxford: Archaeopress. p 110.Google Scholar
Maggi, R, Gebel, HG. 1990. A preliminary report on the chipped stones industries of the mid-holocene shell-midden communities of Ra’s al-Hamra 5, Layer 1 (Sultanate of Oman). Rivista di Archeologia Anno XIV:524.Google Scholar
Marcucci, LG, Badel, E, Genchi, F, Munoz, O, Todero, A, Tosi, M. 2014. New investigations at the prehistoric shell midden of Ra’s al-Hamra 6 (Sultanate of Oman): results of the 2012 and 2013 excavation seasons. Proceedings of the Seminar for Arabian Studies 44:235256.Google Scholar
Munoz, O. 2014. Pratiques funéraires et paramètres biologiques dans la péninsule d’Oman du Néolithique à la fin de l’âge du Bronze ancien (V-IIIe mill. avant notre ère). Paris: Université de Paris 1 Panthéon-Sorbonne/Università di Roma La Sapienza. 540 p.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 Radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Salvatori, S. 2007. The prehistoric graveyard of Ra’s al-Hamra 5, Muscat, Sultanate of Oman. The Journal of Oman Studies 14:5202.Google Scholar
Southon, J, Kashgarian, M, Fontugne, M, Metivier, B, Yim, W. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1):167180.Google Scholar
Staubwasser, M, Sirocko, F, Grootes, PM, Erlenkeuser, H. 2002. South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Paleoceanography 17:1063.Google Scholar
Tosi, M. 1975. Notes on the distribution and exploitation of natural resources in ancient Oman. Journal of Oman Studies 1:187206.Google Scholar
Uerpmann, HP. 1991. Radiocarbon dating of shell middens in the Sultanate of Oman. PACT 29:335347.Google Scholar
Uerpmann, H-P, Uerpmann, M. 2003. Stone Age sites and their natural environment. The Capital Area of Northern Oman, Part III. Beihefte zum Tübinger Atlas des Vorderen Orients Reihe A (Naturwissenschaften), Nr. 31/3. Wiesbaden: Dr. Ludwig Reichert Verlag.Google Scholar
Wilkens, B. 2005. Fishing in the Arabian Sea: a short note on the prehistoric sites RH6 and Ra’s al-Jinz 1 in Oman. Paléorient 31(1):126130.Google Scholar
Zazzo, A. 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology 416:168178.CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F. 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310(1–2):5261.Google Scholar
Zazzo, A, Munoz, O, Saliège, J-F, Moreau, C. 2012. Variability in the marine radiocarbon reservoir effect in Muscat (Sultanate of Oman) during the 4th millennium BC: reflection of taphonomy or environment? Journal of Archaeological Science 39(7):25592567.Google Scholar
Zazzo, A, Munoz, O, Saliège, J-F. 2014. Diet and mobility in a late Neolithic population of coastal Oman inferred from radiocarbon dating and stable isotope analysis. American Journal of Physical Anthropology 153(3):353364.Google Scholar