Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T06:12:37.814Z Has data issue: false hasContentIssue false

SINGLE AMINO ACID RADIOCARBON DATING OF TWO NEANDERTHALS FOUND AT ŠAL’A (SLOVAKIA)

Published online by Cambridge University Press:  16 February 2022

Rachel J A Hopkins*
Affiliation:
Oxford Radiocarbon Accelerator Unit, RLAHA, School of Archaeology, University of Oxford, UK Department of Anthropology, University of New Mexico, USA
Mateja Hajdinjak
Affiliation:
Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany Francis Crick Institute in London, UK
Alena Šefčáková
Affiliation:
Department of Anthropology, Slovak National Museum – Natural History Museum, Bratislava, Slovakia
Dan Comeskey
Affiliation:
Oxford Radiocarbon Accelerator Unit, RLAHA, School of Archaeology, University of Oxford, UK
Thibaut Devièse
Affiliation:
Oxford Radiocarbon Accelerator Unit, RLAHA, School of Archaeology, University of Oxford, UK
Tom F G Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit, RLAHA, School of Archaeology, University of Oxford, UK
*
*Corresponding author: contact@rjahopkins.com

Abstract

Human remains from the (late) Middle Paleolithic remain rare. Improving our understanding of their spatio-temporal distribution is essential for obtaining insights into human evolution and the dynamics between Neanderthals and early Anatomically Modern Humans (AMHs). We present the single-amino-acid radiocarbon dating and ancient DNA results from the only Neanderthal skeletal remains known in Slovakia (Šal’a I and Šal’a II). As they were found without archaeological context and in secondary deposition, recontextualization is important. By employing the hydroxyproline radiocarbon dating method, we were able to successfully counteract contamination issues and circumvent problems caused by highly degraded collagen. By contrast, DNA analysis did not detect any endogenous DNA at the limits of our resolution. We conclude that the radiocarbon ages of >44,800 BP (OxA-X-2731-16) and >45,100 (OxA-X-2731-15) firmly place the two individuals in the Middle Paleolithic, and before the arrival of AMHs to the region. Furthermore, indirect evidence based on morphology and possibly related faunal remains suggest ages younger than 100 ka. This time frame coincides with a period in which Neanderthal populations were highly dispersed in Europe, yet in decline.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, RM, Kubacka, I, Chinnery, PF, Lightowlers, RN, Turnbull, DM, and Howell, N. 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics 23:147147.CrossRefGoogle ScholarPubMed
Beauval, C, Lacrampe-Cuyaubère, F, Maureille, B, and Trinkaus, E. 2006. Direct radiocarbon dating and stable isotopes of the Neandertal femur from Les Rochers-de-Villeneuve (Lussac-les-Châteaux, Vienne). Bulletins et Mémoires de la Société d’Anthropologie de Paris 18(1):3542.Google Scholar
Benazzi, S, Douka, K, Fornai, C, Bauer, CC, Kullmer, O, Svoboda, J, Pap, I, Mallegni, F, Bayle, P, Coquerelle, M, Condemi, S, Ronchitelli, A, Harvati, K, and Weber, GW. 2011. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479(7374):525528.CrossRefGoogle ScholarPubMed
Benazzi, S, Slon, V, Talamo, S, Negrino, F, Peresani, M, Bailey, SE, Sawyer, S, Panetta, D, Vicino, G, Starnini, E, Mannino, MA, Salvadori, PA, Meyer, M, Paabo, S, and Hublin, JJ. 2015. The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348:793796.CrossRefGoogle ScholarPubMed
Briggs, AW, Stenzel, U, Johnson, PL, Green, RE, Kelso, J, Prufer, K, Meyer, M, Krause, J, Ronan, MT, Lachmann, M, and Paabo, S. 2007. Patterns of damage in genomic DNA sequences from a Neandertal. PNAS 104:1461614621.CrossRefGoogle ScholarPubMed
Brock, F, Higham, TFG, Ditchfield, P, and Bronk Ramsey, C. 2010. Current Pretreatment Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, TFG, and Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.CrossRefGoogle Scholar
Conard, NJ, Grootes, PM, and Smith, FH. 2004. Unexpectedly recent dates for human remains from Vogelherd. Nature 430(6996):198201.CrossRefGoogle ScholarPubMed
Crevecoeur, I, Bayle, P, Rougier, H, Maureille, B, Higham, T, van der Plicht, J, De Clerck, N, and Semal, P. 2010. The Spy VI child: A newly discovered Neandertal infant. Journal of Human Evolution 59(6):641656.CrossRefGoogle ScholarPubMed
Dabney, J, Knapp, M, Glocke, I, Gansauge, MT, Weihmann, A, Nickel, B, Valdiosera, C, Garcia, N, Paabo, S, Arsuaga, JL, and Meyer, M. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. PNAS 110:1575815763.CrossRefGoogle ScholarPubMed
Davies, W, White, D, Lewis, M, and Stringer, C. 2015. Evaluating the transitional mosaic: frameworks of change from Neanderthals to Homo sapiens in eastern Europe. Quaternary Science Reviews 118:211242.CrossRefGoogle Scholar
Dee, M. and Bronk Ramsey, C. 2000. Refinement of graphite target production at ORAU. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172:449453.CrossRefGoogle Scholar
Devièse, T, Comeskey, D, McCullagh, J, Bronk Ramsey, C, and Higham, T. 2018. New protocol for compound-specific radiocarbon analysis of archaeological bones. Rapid Communications in Mass Spectrometry 32(5):373379.CrossRefGoogle ScholarPubMed
Devièse, T, Karavanić, I, Comeskey, D, Kubiak, C, Korlević, P, Hajdinjak, M, Radović, S, Procopio, N, Buckley, M, Pääbo, S, and Higham, T. 2017. Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the Middle to Upper Paleolithic transition. Proceedings of the National Academy of Sciences 144(40):1060610611.CrossRefGoogle Scholar
Eisová, S, Velemínský, P, and Bruner, E. 2019. The Neanderthal endocast from Gánovce (Poprad, Slovak Republic). Journal of Anthropological Sciences (97):139149.Google Scholar
Fu, Q, Hajdinjak, M, Moldovan, OT, Constantin, S, Mallick, S, Skoglund, P, Patterson, N, Rohland, N, Lazaridis, I, Nickel, B, Viola, B, Prüfer, K, Meyer, M, Kelso, J, Reich, D, and Pääbo, S. 2015. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524:216219.CrossRefGoogle ScholarPubMed
Fu, Q, Li, H, Moorjani, P, Jay, F, Slepchenko, SM, Bondarev, AA, Johnson, PLF, Aximu-Petri, A, Prüfer, K, de Filippo, C, Meyer, M, Zwyns, N, Salazar-García, DC, Kuzmin, YV, Keates, SG, Kosintsev, PA, Razhev, DI, Richards, MP, Peristov, NV, Lachmann, M, Douka, K, Higham, TFG, Slatkin, M, Hublin, J-J, Reich, D, Kelso, J, Viola, TB, and Pääbo, S. 2014. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature pages 813.Google ScholarPubMed
Fu, Q, Mittnik, A, Johnson, PL, Bos, K, Lari, M, Bollongino, R, Sun, C, Giemsch, L, Schmitz, R, Burger, J, Ronchitelli, A, Martini, F, Cremonesi, RG, Svoboda, J, Bauer, P, Caramelli, D, Castellano, S, Reich, D, Paabo, S, and Krause, J. 2013. A revised timescale for human evolution based on ancient mitochondrial genomes. Current Biology 23:553559.CrossRefGoogle ScholarPubMed
Fu, Q, Posth, C, Hajdinjak, M, Petr, M, Mallick, S, Fernandes, D, Furtwangler, A, Haak, W, Meyer, M, Mittnik, A, Nickel, B, Peltzer, A, Rohland, N, Slon, V, Talamo, S, Lazaridis, I, Lipson, M, Mathieson, I, Schiffels, S, Skoglund, P, Derevianko, AP, Drozdov, N, Slavinsky, V, Tsybankov, A, Cremonesi, RG, Mallegni, F, Gely, B, Vacca, E, Morales, MR, Straus, LG, Neugebauer-Maresch, C, Teschler-Nicola, M, Constantin, S, Moldovan, OT, Benazzi, S, Peresani, M, Coppola, D, Lari, M, Ricci, S, Ronchitelli, A, Valentin, F, Thevenet, C, Wehrberger, K, Grigorescu, D, Rougier, H, Crevecoeur, I, Flas, D, Semal, P, Mannino, MA, Cupillard, C, Bocherens, H, Conard, NJ, Harvati, K, Moiseyev, V, Drucker, DG, Svoboda, J, Richards, MP, Caramelli, D, Pinhasi, R, Kelso, J, Patterson, N, Krause, J, Paabo, S, and Reich, D. 2016. The genetic history of Ice Age Europe. Nature 534:200205.CrossRefGoogle ScholarPubMed
Gansauge, M-T, Aximu-Petri, A, Nagel, S, and Meyer, M. 2020. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nature protocols pages 123.Google ScholarPubMed
Hajdinjak, M, Fu, Q, Hubner, A, Petr, M, Mafessoni, F, Grote, S, Skoglund, P, Narasimham, V, Rougier, H, Crevecoeur, I, Semal, P, Soressi, M, Talamo, S, Hublin, JJ, Gusic, I, Kucan, Z, Rudan, P, Golovanova, LV, Doronichev, VB, Posth, C, Krause, J, Korlevic, P, Nagel, S, Nickel, B, Slatkin, M, Patterson, N, Reich, D, Prufer, K, Meyer, M, Paabo, S, and Kelso, J. 2018. Reconstructing the genetic history of late Neanderthals. Nature 555:652656.CrossRefGoogle ScholarPubMed
Hedges, REM, Humm, MJ, Foreman, J, van Klinken, GJ, and Bronk Ramsey, C. 1992. Developments in Sample Combustion to Carbon Dioxide, and in the Oxford AMS Carbon Dioxide Ion Source System. Radiocarbon 34(3):306311.CrossRefGoogle Scholar
Higham, TFG, Douka, K, Wood, R, Bronk Ramsey, C, Brock, F, Basell, L, Camps, M, Arrizabalaga, A, Baena, J, Barroso-Ruíz, C, Bergman, C, Boitard, C, Boscato, P, Caparrós, M, Conard, NJ, Draily, C, Froment, A, Galván, B, Gambassini, P, Garcia-Moreno, A, Grimaldi, S, Haesaerts, P, Holt, B, Iriarte-Chiapusso, M.-J, Jelinek, A, Jordá Pardo, JF, Maíllo-Fernández, J-M, Marom, A, Maroto, J, Menéndez, M, Metz, L, Morin, E, Moroni, A, Negrino, F, Panagopoulou, E, Peresani, M, Pirson, S, de la Rasilla, M, Riel-Salvatore, J, Ronchitelli, A, Santamaria, D, Semal, P, Slimak, L, Soler, J, Soler, N, Villaluenga, A, Pinhasi, R, and Jacobi, RM. 2014. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512(7514):306309.CrossRefGoogle ScholarPubMed
Hopkins, RJA. 2019. A matter of time - Towards an absolute chronology for the Middle-Upper Palaeolithic biocultural shift along the Danube fluvial corridor. Unpublished d. Phil., University of Oxford, Oxford.Google Scholar
Hublin, J-J, Sirakov, N, Aldeias, V, Bailey, S, Bard, E, Delvigne, V, Endarova, E, Fagault, Y, Fewlass, H, Hajdinjak, M, Kromer, B, Krumov, I, Marreiros, J, Martisius, NL, Paskulin, L, Sinet-Mathiot, V, Meyer, M, Pääbo, S, Popov, V, Rezek, Z, Sirakova, S, Skinner, MM, Smith, GM, Spasov, R, Talamo, S, Tuna, T, Wacker, L, Welker, F, Wilcke, A, Zahariev, N, McPherron, SP, and Tsanova, T. 2020. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581(7808):299302.CrossRefGoogle ScholarPubMed
Jakab, J. 1996. Nový nález neandertálca na Slovensku. Informátor Slovenskej archeologickej spoločnosti pri SAV Nitra, 7:6.Google Scholar
Jakab, J. 1998. Poodhalené tajomstvo Váhu. Slovensko 3:5759.Google Scholar
Jakab, J. 2005. Šal’a II : documentation and description of a Homo sapiens neanderthalensis find from Slovakia. Anthropologie 43(2-3):2005.Google Scholar
Jäger, K-D. 1989. Aussagen und Probleme radi- ometrischer Untersuchungen zur Datierung des Travertins von Bilzingsleben (Kreis Artern). Ethnogrfisch-Archäologische Zeitschrift 30:664672.Google Scholar
Kaminská, L, editor 2014. Paleolit a Mezolit, volume 2. Archeologický Ústav Slovenskej Akadémie Vied Nitra, Nitra.Google Scholar
Kircher, M, Sawyer, S, and Meyer, M. 2012. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40:e3.CrossRefGoogle ScholarPubMed
Korlevic, P, Gerber, T, Gansauge, MT, Hajdinjak, M, Nagel, S, Aximu-Petri, A, and Meyer, M. 2015. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59:8793.CrossRefGoogle ScholarPubMed
Krause, J, Briggs, AW, Kircher, M, Maricic, T, Zwyns, N, Derevianko, A, and Paabo, S. 2010a. A complete mtDNA genome of an early modern human from Kostenki, Russia. Current Biology 20:231236.CrossRefGoogle ScholarPubMed
Krause, J, Fu, Q, Good, JM, Viola, B, Shunkov, MV, Derevianko, AP, and Paabo, S. 2010b. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464:894897.CrossRefGoogle ScholarPubMed
Krause, J, Orlando, L, Serre, D, Viola, B, Prüfer, K, Richards, MP, Hublin, J-J, Hänni, C, Derevianko, AP, and Pääbo, S. 2007. Neanderthals in central Asia and Siberia. Nature 449(7164):902904.CrossRefGoogle ScholarPubMed
Li, H and Durbin, R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589595.CrossRefGoogle ScholarPubMed
Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R, and Genome Project Data, Processing 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:20782079.CrossRefGoogle ScholarPubMed
Maricic, T, Whitten, M, and Paabo, S. 2010. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5:e14004.CrossRefGoogle ScholarPubMed
Meyer, M, Fu, Q, Aximu-Petri, A, Glocke, I, Nickel, B, Arsuaga, JL, Martinez, I, Gracia, A, de Castro, JM, Carbonell, E, and Paabo, S. 2014. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403406.CrossRefGoogle ScholarPubMed
Meyer, M, Kircher, M, Gansauge, MT, Li, H, Racimo, F, Mallick, S, Schraiber, JG, Jay, F, Prufer, K, de Filippo, C, Sudmant, PH, Alkan, C, Fu, Q, Do, R, Rohland, N, Tandon, A, Siebauer, M, Green, RE, Bryc, K, Briggs, AW, Stenzel, U, Dabney, J, Shendure, J, Kitzman, J, Hammer, MF, Shunkov, MV, Derevianko, AP, Patterson, N, Andres, AM, Eichler, EE, Slatkin, M, Reich, D, Kelso, J, and Paabo, S. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222226.CrossRefGoogle ScholarPubMed
Renaud, G, Stenzel, U, and Kelso, J. 2014. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res 42:e141.CrossRefGoogle ScholarPubMed
Sawyer, S, Krause, J, Guschanski, K, Savolainen, V, and Paabo, S. 2012. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7:e34131.CrossRefGoogle ScholarPubMed
Schmitz, RW, Serre, D, Bonani, G, Feine, S, Hillgruber, F, Krainitzki, H, Paabo, S, and Smith, FH. 2002. The Neandertal type site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. Proceedings of the National Academy of Sciences 99(20):1334213347.CrossRefGoogle ScholarPubMed
Semal, P, Rougier, H, Crevecoeur, I, Jungels, C, Flas, D, Hauzeur, A, Maureille, B, Germonpré, M, Bocherens, H, Pirson, S, Cammaert, L, De Clerck, N, Hambucken, A, Higham, T, Toussaint, M, and van der Plicht, J. 2009. New data on the late Neandertals: Direct dating of the Belgian Spy fossils. American Journal of Physical Anthropology 138(4):421428.CrossRefGoogle ScholarPubMed
Slon, V, Hopfe, C, Weiß, CL, Mafessoni, F, de la Rasilla, M, Lalueza-Fox, C, Rosas, A, Soressi, M, Knul, MV, and Miller, R. 2017. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356:605608.CrossRefGoogle ScholarPubMed
Sládek, V, Trinkaus, E, Šefčáková, A, and Halouzka, R. 2002. Morphological affinities of the Šaľa 1 frontal bone. Journal of Human Evolution 43:787815.CrossRefGoogle Scholar
Street, M, Terberger, T, and Orschiedt, J. 2006. A critical review of the German Paleolithic hominin record. Journal of Human Evolution 51(6):551579.CrossRefGoogle ScholarPubMed
Talamo, S, Hajdinjak, M, Mannino, MA, Fasani, L, Welker, F, Martini, F, Romagnoli, F, Zorzin, R, Meyer, M, and Hublin, J-J. 2016. Direct radiocarbon dating and genetic analyses on the purported Neanderthal mandible from the Monti Lessini (Italy). Nature Publishing Group 6:19.Google Scholar
Toussaint, M and Pirson, S. 2006. Neandertal Studies in Belgium: 2000–2005. Period biol 108(3):373387.Google Scholar
Trinkaus, E. 2005. Early Modern Humans. Annual Review of Anthropology 34(1):207230.CrossRefGoogle Scholar
Vlček, E. 1953. Nález neandertálskeho človeka na Slovensku. Slovenská Archeologia 1:5132.Google Scholar
Vlček, E. 1955. The Fossil Man of Ganovce, Czechoslovakia. The Journal of the Royal Anthropological Institute of Great Britain and Ireland 85(1/2):163172.CrossRefGoogle Scholar
Vlček, E. 1968. Nález pozůstatků neandertálce v Šali na Slovensku. Antropozoikum - Sborník geologických věd, Řada A 5:105124.Google Scholar
Vlček, E. 1969. Neandertaler der Tschechoslowakei. Academia, Prague.Google Scholar
Vlček, E. 1995. Kamenný mozek. Výlitek mozkovny neandertálce, Hrádok v Gánovcích na Spiši. Vesmír 74(11):615624.Google Scholar
Ďurišová, A. 1989. Molaren von Palaeoloxodon antiquus (Falconer et Cautley,1847) (Mammalia, Proboscidea) aus dem fluvialen Akkumulationen des Waag-Flusses auf dem Gebiet von Šaľa, Kreis Galanta (Tschechoslowakei). Acta Rer. Natur. Mus. Nat. Slov 35:716.Google Scholar
Ďurišová, A. 1993. Fosílne zvyšky druhu Dicerorhinus hemitoechus (Falconer) (Mammalia, Rhinocerotidae) z fluviálnych náplavov Váhu v Šali (Slovensko, ČSFR). 39:3–11.Google Scholar
Ďurišová, A. 1994. Dicerorhinus kirchbergensis (Mammalia, Rhinocerotidae) z fluviálnych náplavov Váhu v Šali (Slovenská republika). Acta Rer. Natur. Mus. Nat. Slov 40:713.Google Scholar
Šefčáková, A, Halouzka, R, and Thurzo, M. 2005. Príspevok k histórii, stratigrafii a datovaniu neandertálca Šaľa 1 zo Slovenska. Acta Rer. Natur. Mus. Nat. Slov 51:7187.Google Scholar