Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T04:38:41.526Z Has data issue: false hasContentIssue false

Stone Age Pottery Chronology in the Northeast European Forest Zone: New AMS and EA-IRMS Results on Foodcrusts

Published online by Cambridge University Press:  08 March 2016

Henny Piezonka*
Affiliation:
German Archaeological Institute, Eurasia Department, Berlin, Germany.
John Meadows
Affiliation:
Center for Baltic and Scandinavian Archaeology, Foundation of the Schleswig-Holstein State Museums, Schloss Gottorf, Schleswig, Germany; also Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, Christian Albrechts University Kiel, Germany.
Sönke Hartz
Affiliation:
Archaeological State Museum, Foundation of the Schleswig Holstein State Museums, State Museums Schloss Gottorf, 24837 Schleswig, Germany.
Elena Kostyleva
Affiliation:
Ivanovo State University, Ivanovo, Russia.
Nadezhda Nedomolkina
Affiliation:
Vologda State Museum for History, Architecture and Art, Vologda, Russia.
Marina Ivanishcheva
Affiliation:
Child and Youth Centre “Lider,” Vologda, Russia.
Natalya Kosorukova
Affiliation:
Cherepovec State University and Cherepovec Museum Association, Cherepovec, Russia.
Thomas Terberger
Affiliation:
Lower Saxony State Agency for Heritage Services, Hanover, Germany.
*
*Corresponding author. Email: Henny.Piezonka@dainst.de.

Abstract

Pottery produced by mobile hunter-gatherer-fisher groups in the northeast European forest zone is among the earliest in Europe. Absolute chronologies, however, are still subject to debate due to a general lack of reliable contextual information. Direct radiocarbon dating of carbonized surface residues (“foodcrusts”) on pots can help to address this problem, as it dates the use of the pottery. If a pot was used to cook fish or other aquatic species, however, carbon in the crust may have been depleted in 14C compared to carbon in terrestrial foods and thus appear older than it really is (i.e. showing a “freshwater reservoir effect,” or FRE). A connected problem, therefore, is the importance of aquatic resources in the subsistence economy, and whether pots were used to process aquatic food. To build better chronologies from foodcrust dates, we need to determine which 14C results are more or less likely to be subject to FRE, i.e. to distinguish crusts derived mainly from aquatic ingredients from those composed mainly of terrestrial foods. Integrating laboratory analyses with relative chronologies based on typology and stratigraphy can help to assess the extent of FRE in foodcrust dates. This article reports new 14C and stable isotope measurements on foodcrusts from six Stone Age sites in central and northern European Russia, and one in southeastern Estonia. Most of these 14C results are not obviously influenced by FRE, but the isotopic data suggest an increasing use of aquatic products over the course of the 6th and 5th millennia cal BC.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alliksaar, T, Heinsalu, A. 2012. A radical shift from soft-water to hard-water lake: palaeolimnological evidence from Lake Kooraste Kõverjärv, southern Estonia. Estonian Journal of Earth Sciences 61(4):317327.CrossRefGoogle Scholar
Amundson, R, Austin, AT, Schuur, EAG, Yoo, K, Matzek, V, Kendall, C, Uebersax, A, Brenner, D, Baisden, WT. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17(1):1031.Google Scholar
Bērziņš, V, Brinker, U, Klein, C, Lübke, H, Meadows, J, Rudzīte, M, Schmölcke, U, Stümpel, H, Zagorska, I. 2014. New research on Riņņukalns, a Neolithic freshwater shell midden in northern Latvia. Antiquity 88(341):715732.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Bruhn, F, Duhr, A, Grootes, PM, Mintrop, A, Nadeau, M-J. 2001. Chemical removal of conservation substances by ‘Soxhlet’-type extraction. Radiocarbon 43(2A):229237.CrossRefGoogle Scholar
Craig, OE, Forster, M, Andersen, SH, Koch, E, Crombé, P, Milner, NJ, Stern, B, Bailey, GN, Heron, CP. 2007. Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry 49(1):135152.CrossRefGoogle Scholar
Craig, OE, Steele, VJ, Fischer, A, Hartz, S, Andersen, SH, Donohoe, P, Glykou, A, Saula, H, Jones, DM, Koch, E, Heron, CP. 2011. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. Proceedings of the National Academy of Sciences of the USA 108(44):17,9105.Google Scholar
DeNiro, MJ, Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45(3):341351.Google Scholar
Evershed, RP. 2008. Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50(6):895924.CrossRefGoogle Scholar
Fernandes, R, Meadows, J, Dreves, A, Nadeau, M-J, Grootes, P. 2014. A preliminary study on the influence of cooking on the C and N isotopic composition of multiple organic fractions of fish (mackerel and haddock). Journal of Archaeological Science 50:153159.Google Scholar
Filatova, VF. 2006. Voprosy proiskhozhdenija i etnokulturnoi prinadlezhnosti naseleniya epokhi mezolita (Questions of the emergence and ethno-cultural position of the population of the Mesolithic period). In: Kochkurkina SI, Kosmenko MG, editors. Problemy etnokulturnoi istorii naseleniya Karelii (mezolit-srednevekove) (Problems of the ethno-cultural history of the Population of Karelia). Petrozavodsk. p 14–72.Google Scholar
Fischer, A, Olsen, J, Richards, M, Heinemeier, J, Sveinbjörnsdóttir, ÁE, Bennike, P. 2007. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. Journal of Archaeological Science 34(12):21252150.Google Scholar
Fraser, RA, Bogaard, A, Charles, M, Styring, AK, Wallace, M, Jones, G, Ditchfield, P, Heaton, THE. 2013. Assessing natural variation and the effects of charring, burial and pretreatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science 40(12):47544766.CrossRefGoogle Scholar
Hartz, S, Lüth, F, Terberger, T, editors. 2011. Early pottery in the Baltic. Proceedings of the International Workshop ‘Early Pottery in the Baltic,’ Schleswig, 20–21 October 2006. Bericht der Römisch-Germanischen Kommission 89.Google Scholar
Hartz, S, Kostyleva, E, Piezonka, H, Terberger, T, Tsydenova, N, Zhilin, MG. 2012. Hunter-gatherer pottery and charred residue dating: new results on early ceramics in the north Eurasian forest zone. Radiocarbon 54(3–4):10331048.Google Scholar
Heron, C, Craig, OE. 2015. Aquatic resources in foodcrusts: identification and implication. Radiocarbon 57(4):707719.CrossRefGoogle Scholar
Ivanishchev, AM, Ivanishcheva, MV. 2000. Tudozero-V poselenie pozdnego mezolita – rannego neolita v Yuzhnom Prionezh’e (Tudozero-V, a settlement of the late Mesolithic-early Neolithic in the south Onegy region). Tverskoi Arkheologicheski Sbornik 4(1):284296.Google Scholar
Ivanishcheva, MV, Kulkova, MA, Sapelko, TV. 2015. Natural processes in Holocene in the South Onega Lake region (on the basis of complex studies of multilayer settlement Tudozero V). In: Lozovskii VM, Lozovskaya OV, Vybornov AA, editors. Neolithic Cultures of Eastern Europe: Chronology, Paleoecology and Cultural Traditions. Materials of the international conference dedicated to the 75th anniversary of Viktor Petrovich Tretyakov, May 12–16, 2015, St Petersburg. St Petersburg: Izdatel’stvo OOO “Periferiya.” p 285289.Google Scholar
Jaanits, L. 1968. Die frühneolithische Kultur in Estland. Congressus Secundus Internationalis Fenno-Ugristarum, Helsinki 23.-28.8.1965, Pars 2. Helsinki. p 12–25.Google Scholar
Jordan, P, Zvelebil, M. 2009. Ex oriente lux: the prehistory of hunter-gatherer ceramic dispersals. In: Jordan P, Zvelebil M, editors. Ceramics Before Farming: The Dispersal of Pottery Among Prehistoric Eurasian Hunter-Gatherers. Walnut Creek: Left Coast Press. p 3389.Google Scholar
Karmanov, VN, Zaretskaya, NE, Volokitin, AV. 2014. Another way of early pottery distribution in eastern Europe? Case study of the Pezmog 4 site, European far northeast. Radiocarbon 56(2):733741.CrossRefGoogle Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):13061316.CrossRefGoogle Scholar
Kiryanova, AV, Kosorukova, NV. 2013. K voprosu o datirovke torfyanikovoi stoyanki Karavaikha 4 v basseine ozera Vozhe [On the question of the dating of the peatbog site of Karavaikha 4 in Lake Vozhe basin]. In: Geologo-Arkheologicheskie issledovaniya v timano-severouralskom regione. Doklady 16-i nauchnoi konferencii 31 oktyabrya 2013g. Syktyvkar. p 105–11.Google Scholar
Kosorukova, NV. 2007. Perekhod ot mezolita k neolitu v bassejne ozera Vozhe (novye materialy) [The transition from the Mesolithic to the Neolithic in the basin of Lake Vozhe (new materials)]. In: Russkaya kultura novogo stoletiya: problemy izucheniya, sokhraneniya I ispolzovaniya istoriko-kulturnogo naslediya. Sbornik statei. Vologda: Knizhnoe nasledie. p 41–52.Google Scholar
Lee-Thorp, JA, Sealy, JC, van der Merwe, NJ. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16(6):585599.Google Scholar
Liiva, A, Ilves, E, Punning, JM. 1966. Tartu radiocarbon dates I. Radiocarbon 8:434441.Google Scholar
Lorenz, S, Nedomolkina, NG, Piezonka, H. 2012. Geoarchaeology and floodplain development at the outstanding multiperiod dwelling site of Veksa 3 in the Sukhona basin. In: Zhirob AI, Kuznecov VYu, Subetto DA, Tide I, editors. Geomorfologiya i Paleogeografiya Polyarnykh Regionov: Materialy sovmestnoi mezhdunarodnoi konferencii “Geomorphologiya i Paleogeografiya Polyarnykh Regionov”, simposiuma “Leopoldina” i soveshchaniya rabochei gruppy INQUA Peribaltic. Sankt-Peterburg, SPbGU, 9-17 sentyabrya 2012 goda. St Petersburg. p 467–68.Google Scholar
Mazurkevich, AN, Dolbunova, EV. 2012. The most ancient pottery and Neolithisation of Eastern Europe. Fontes Archaeologici Posnanienses 48:143159.Google Scholar
Meadows, J, Bērziņš, V, Lübke, H, Schmölcke, U, Zagorska, I, Zariņa, G. 2016. Dietary freshwater reservoir effects and the radiocarbon ages of prehistoric human bones from Zvejnieki, Latvia. Journal of Archaeological Science: Reports. doi:10.1016/j.jasrep.2015.10.024.CrossRefGoogle Scholar
Nedomolkina, NG. 2004. Neoliticheskie kompleksy poselenii Veksa, Veksa III basseina Verkhnei Sukhony i ikh khronologiya [Neolithic complexes of the settlements Veksa, Veksa III of the Upper Sukhona basin and their chronology]. In: Problemy khronologiya i etnokulturnykh vsaimodeistvii v neolite Evrazii [Problems of chronology and ethno-cultural interrelations in the Neolithic of Eurasia]. Volume 2. St Petersburg. p 265–79.Google Scholar
Oshibkina, SV. 2006. To the question of the Neolithic revolution and the Neolithization of the forest zone of Eurasia. In: Koryakova LN, Pavlov PY, Shirokov VN, Shorin AA, editors. II Northern Archaeological Congress. Papers. September 24–30, 2006, Khanty-Mansiisk. Ekaterinburg: Charoid. p 262279.Google Scholar
Philippsen, B. 2013a. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24.Google Scholar
Philippsen, B. 2013b. Der Süßwasser-Reservoireffekt in der 14C-Datierung: neue Analysen und mesolithische Kochexperimente. Experimentelle Archäologie in Europa – Bilanz. p 2032.Google Scholar
Philippsen, B, Meadows, J. 2014. Inland Ertebølle Culture: the importance of aquatic resources and the freshwater reservoir effect in radiocarbon dates from pottery foodcrusts. In: Fernandes R, Meadows J, editors. Human Exploitation of Aquatic Landscapes’ special issue. Internet Archaeology 37. http://dx.doi.org/10.11141/ia.37.91.CrossRefGoogle Scholar
Philippsen, B, Kjeldsen, H, Hartz, S, Paulsen, H, Clausen, I, Heinemeier, J. 2010. The hardwater effect in AMS 14C dating of foodcrusts on pottery. Nuclear Instruments and Methods in Physics Research B 268(7–8):995998.CrossRefGoogle Scholar
Piezonka, H. 2008. Neue AMS-Daten zur frühneolithischen Keramikentwicklung in der nordosteuropäischen Waldzone. Estonian Journal of Archaeology 12(2):67113.Google Scholar
Piezonka, H. 2015. Jäger, Fischer, Töpfer. Wildbeutergruppen mit früher Keramik in Nordosteuropa im 6. und 5. Jahrtausend v. Chr. Archäologie in Eurasien 30. Bonn: Habelt-Verlag.Google Scholar
Piezonka, H, Kostyleva, E, Zhilin, MG, Dobrovolskaya, M, Terberger, T. 2013. Flesh or fish? First results of archaeometric research of prehistoric burials from Sakhtysh IIa, Upper Volga region, Russia. Documenta Praehistorica XL:5773.Google Scholar
Piličiauskas, G, Heron, C. 2015. Aquatic radiocarbon reservoir offsets in the southeastern Baltic. Radiocarbon 57(4):539556.Google Scholar
Povlsen, K. 2013. The introduction of ceramics in the Ertebølle Culture. Danish Journal of Archaeology 2(2):146163.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Scharl, S. 2004. Die Neolithisierung Europas. Ausgewählte Modelle und Hypothesen. Rahden: Verlag Marie Leidorf GmbH.Google Scholar
Schmölcke, U, Meadows, J, Ritchie, K, Bērziņš, V, Lübke, H, Zagorska, I. 2016. Neolithic fish remains from the freshwater shell midden Riņņukalns in northern Latvia. Environmental Archaeology: The Journal of Human Palaeoecology. doi:10.1179/1749631415Y.0000000011.Google Scholar
Sommer, RS, Benecke, N, Lõugas, L, Nelle, O, Schmölcke, U. 2011. Holocene survival of the wild horse in Europe: a matter of open landscape? Journal of Quaternary Science 26(8):805812.CrossRefGoogle Scholar
Timofeev, VI, Zaiceva, GI, Dolukhanov, PM, Shukurov, AM. 2004. Radiouglerodnaya khronologiya neolita Severnoi Evrazii [Radiocarbon chronology of the Neolithic of Northern Eurasia]. St Petersburg.Google Scholar
Utkin, AV, Kostyleva, EL. 2001. Pogrebeniya na stoyanke Karavaikha [Burials at the site of Karavaikha]. Rossiiskaya arkheologiya 3:5566.Google Scholar
Vybornov, A, Zaitseva, G, Kovaliukh, N, Kulkova, M, Possnert, G, Skripkin, V. 2012. Chronological problems with neolithization of the northern Caspian Sea area and the forest-steppe Povolzhye region. Radiocarbon 54(3–4):795799.Google Scholar
Wood, RE, Higham, TFG, Buzilhova, A, Suvorov, A, Heinemeier, J, Olsen, J. 2013. Freshwater radiocarbon reservoir effects at the burial ground of Minino, northwest Russia. Radiocarbon 55(1):163177.CrossRefGoogle Scholar
Yanits, LY. 1976. Raskopki neoliticheskogo poseleniya Kyaepa (Excavation of the Neolithic settlement of Kääpa). Eesti Teaduste Akadeemia Toimetised 25. Ühistkomateadused. p 45–8.Google Scholar
Yoshida, K, Kunikita, D, Miyazaki, Y, Nishida, Y, Miyao, T, Matsuzaki, H. 2013. Dating and stable isotope analysis of charred residues on the Incipient Jomon pottery (Japan). Radiocarbon 55(2–3):13221333.Google Scholar
Zaitseva, G, Skripkin, V, Kovaliukh, N, Possnert, G, Dolukhanov, P, Vybornov, A. 2009. Radiocarbon dating of Neolithic pottery. Radiocarbon 51(2):795801.Google Scholar