Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T05:02:11.683Z Has data issue: false hasContentIssue false

SUNGIR REVISITED: NEW DATA ON CHRONOLOGY AND STRATIGRAPHY OF THE KEY UPPER PALEOLITHIC SITE, CENTRAL RUSSIAN PLAIN

Published online by Cambridge University Press:  12 September 2022

Yaroslav V Kuzmin*
Affiliation:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 630090Novosibirsk, Russia
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, 1000Brussels, Belgium
Marine Wojcieszak
Affiliation:
Royal Institute for Cultural Heritage, 1000Brussels, Belgium Evolutionary Studies Institute, University of the Witwatersrand, 2000Johannesburg, South Africa
Antoine Zazzo
Affiliation:
Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements (AASPE), Muséum national d’Histoire naturelle, CNRS, F-75005Paris, France
Laura van der Sluis
Affiliation:
Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements (AASPE), Muséum national d’Histoire naturelle, CNRS, F-75005Paris, France Department of Evolutionary Anthropology, University of Vienna, 1030Vienna, Austria
Darya I Stulova
Affiliation:
Institute of Archaeology, Russian Academy of Sciences, 117292Moscow, Russia
Konstantin N Gavrilov
Affiliation:
Institute of Archaeology, Russian Academy of Sciences, 117292Moscow, Russia
Elizaveta V Veselovskaya
Affiliation:
N.N. Miklouho-Maklay Institute of Ethnology and Anthropology, Russian Academy of Sciences, 119334Moscow, Russia Russian State University for Humanities, 125993Moscow, Russia
Sergey V Vasilyev
Affiliation:
N.N. Miklouho-Maklay Institute of Ethnology and Anthropology, Russian Academy of Sciences, 119334Moscow, Russia
*
*Corresponding author. Emails: kuzmin@fulbrightmail.org; kuzmin_yv@igm.nsc.ru

Abstract

Chronological and stratigraphic frameworks are of the utmost importance for Upper Paleolithic archaeology, physical anthropology, and ecology. Wide ranging radiocarbon (14C) dates were previously obtained for the Sungir burial complex in the central part of European Russia, which is well-known as the richest funeral Paleolithic assemblage in the world yet recorded. The major problem was the contamination caused by consolidants used during the recovery of human bones in the 1960s. The stratigraphy and spatial structure of the Sungir site were also not well understood previously. New radiocarbon and stable isotope data are generated for the Sungir burials. While some dates were younger due to incomplete removal of contamination, the XAD 14C age on S-1 burial (ca. 29,780 BP) was found to be statistically the same as the previously performed HYP 14C age for this burial (ca. 28,890 BP). Four animal bones found in cultural layer below the burial date to ca. 28,800–30,140 BP, suggesting that both this layer and human burials date to roughly this age range. Narrowing these ages further is difficult considering the larger errors of the 14C dates. This shows that future research attempting to 14C date material excavated many years ago needs to eliminate potential contamination from consolidants through analyses such as FTIR, prior to 14C dating. The chronology and stratigraphy of Sungir do not contradict to correlation of its lithic artifacts with the Streletskian assemblage as the East European variant of the Final Szeletian technocomplex (Early Upper Paleolithic).

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseeva, LI. 1998. Fauna for hunting at the Sungir site. In: Bader, NO, Lavrushin, YA, editors. The Upper Paleolithic site Sungir (graves and environment). Moscow: Nauchny Mir Press. p. 240257. In Russian with English summary.Google Scholar
Alekseeva, TI, Bader, NO, editors. 2000. Homo sungirensis . Upper Palaeolithic man: ecological and evolutionary aspects of the investigation. Moscow: Nauchny Mir Press. In Russian with English abstract.Google Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431451.CrossRefGoogle Scholar
Anikovich, MV, Sinitsyn, AA, Hoffecker, JF, Holliday, VT, Popov, VV, Lisitsyn, SN, Forman, SL, Levkovskaya, GM, Pospelova, GA, Kuz’mina, IE, Burova, ND, Goldberg, P, Macphail, RI, Giaccio, B, Praslov, ND. 2007. Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans. Science 315(5809):223226.CrossRefGoogle ScholarPubMed
Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387391.CrossRefGoogle Scholar
Bader, NO, Lavrushin, YA, editors. 1998. The Upper Paleolithic site Sungir (graves and environment). Moscow: Nauchny Mir Press. In Russian with English abstract.Google Scholar
Bader, ON. 1967. Eine ungewöhnliche paläolitische Bestattung in Mittelrußland. Quartär 18:191194.Google Scholar
Bader, ON. 1978. Sungir. Verkhnepaleoliticheskaya stoyanka. Moscow: Nauka Publishers. In Russian.Google Scholar
Bader, ON. 1998. Sungir. Paleolithic burials. In: Bader, NO, Lavrushin, YA, editors. The Upper Paleolithic site Sungir (graves and environment). Moscow: Nauchny Mir Press. p. 5158. In Russian with English abstract.Google Scholar
Bahn, P, editor. 2001. The Penguin archaeology guide. London: Penguin Books. p. 428429.Google Scholar
Boudin, M, Van Strydonck, M, van den Brande, T, Synal, HA, Wacker, L. 2015. RICH – a new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.CrossRefGoogle Scholar
Boudin, M, Bonafini, M, van den Brande, T, Berghe, IV. 2017. Cross-flow nanofiltration of contaminated protein-containing material: State of the art. Radiocarbon 59(6):17931807.CrossRefGoogle Scholar
Brantingham, PJ, Kuhn, SL, Kerry, KW, editors. 2004. The Early Upper Paleolithic beyond Western Europe. Berkeley, CA, Los Angeles & London: University of California Press.Google Scholar
Brock, F, Wood, R, Higham, T.F.G, Ditchfield, P, Bayliss, A, Bronk Ramsey, C. 2012. Reliability of nitrogen content (%N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54(3–4):879886.CrossRefGoogle Scholar
Chapman, MR, Shackleton, NJ, Duplessy, J.-C. 2000. Sea surface temperature variability during the last glacial–interglacial cycle: assessing the magnitude and pattern of climate change in the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 157(1–2):125.CrossRefGoogle Scholar
Chen, Y, Zou, C, Mastalerz, M, Hu, S, Gasaway, C, Tao, X. 2015. Application of micro-Fourier transform infrared spectroscopy (FTIR) in the geological sciences – A review. International Journal of Molecular Science 16(12):3022330250.CrossRefGoogle Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.CrossRefGoogle Scholar
Devièse, T, Stafford, TW Jr, Waters, MR, Wathen, C, Comeskey, D, Becerra-Valdivia, L, Higham, T. 2018. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans. Quaternary Science Reviews 198:171180.CrossRefGoogle Scholar
Dobrovolskaya, M, Richards, MP, Trinkaus, E. 2012. Direct radiocarbon dates for the mid Upper Paleolithic (eastern Gravettian) burials from Sunghir, Russia. Bulletin et Mémoires de la Societe d’Anthropologie de Paris 24(1–2):96102.Google Scholar
Drucker, D, Bocherens, H. 2004. Carbon and nitrogen stable isotopes as tracers of change in diet breadth during Middle and Upper Palaeolithic in Europe. International Journal of Osteoarchaeology 14(3–4):162177.CrossRefGoogle Scholar
Drucker, DG, Naito, YI, Péan, S, Prat, S, Crépin, L, Chikaraishi, Y, Ohkouchi, N, Puaud, S, Lázničková-Galetová, M, Patou-Mathis, M, Yanevich, A, Bocherens, H. 2017. Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe. Scientific Reports 7:6833.CrossRefGoogle Scholar
Drucker, DG, Naito, YI, Coromina, N, Rufi, I, Soler, M, Soler, J. 2021. Stable isotope evidence of human diet in Mediterranean context during the Last Glacial Maximum. Journal of Human Evolution 154:102967.CrossRefGoogle ScholarPubMed
Ervynck, A, Boudin, M, van Neer, W. 2018. Assessing the radiocarbon freshwater reservoir effect for a northwest-European river system (the Schelde basin, Belgium). Radiocarbon 60(2):395417.CrossRefGoogle Scholar
Fu, Q, Posth, C, Hajdinjak, M, Petr, M, Mallick, S, Fernandes, D, Furtwangler, A, Haak, W, Meyer, M, Mittnik, A, Nickel, B, Peltzer, A, Rohland, N, Slon, V, Talamo, S, Lazaridis, I, Lipson, M, Mathieson, I, Schiffels, S, Skoglund, P, Derevianko, AP, Drozdov, N, Slavinsky, V, Tsybankov, A, Cremonesi, RG, Mallegni, F, Gely, B, Vacca, E, Gonzalez Morales, MR, Straus, LG, Neugebauer-Maresch, C, Teschler-Nicola, M, Constantin, S, Moldovan, OT, Benazzi, S, Peresani, M, Coppola, D, Lari, M, Ricci, S, Ronchitelli, A, Valentin, F, Thevenet, C, Wehrberger, K, Grigorescu, D, Rougier, H, Crevecoeur, I, Flas, D, Semal, P, Mannino, MA, Cupillard, C, Bocherens, H, Conard, NJ, Harvati, K, Moiseyev, V, Drucker, DG, Svoboda, J, Richards, MP, Caramelli, D, Pinhasi, R, Kelso, J, Patterson, N, Krause, J, Pääbo, S, Reich, D. 2016. The genetic history of Ice Age Europe. Nature 534(7606):200205.CrossRefGoogle ScholarPubMed
Gavrilov, K. 2017. Sungir: The choice between Szeletian and Aurignacian. In: Vasil’ev, S, Sinitsyn, A, Otte, M, editors. Le Sungirien (ERAUL, Etudes et Recherches Archéologiques de l’Université de Liège, vol. 147). Liège: Université de Liège. p. 107117.Google Scholar
Gavrilov, KN, Voskresenskaya, EV, Eskova, DK, Lev, SY, Mashchenko, EN, Panin, AV, Reynolds, N. 2021. The studies on the Sungir Upper Paleolithic site in 2014–2015. Camera Praehistorica 2(7):835. In Russian with English abstract.CrossRefGoogle Scholar
Gilligan, I. 2019. Climate, clothing and agriculture in prehistory: linking evidence, causes, and effects. New York: Cambridge University Press.Google Scholar
Hedges, REM, Reynard, LM. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34(8):12401251.CrossRefGoogle Scholar
Hoffecker, JF. 2002. Desolate landscapes: Ice-age settlement in Eastern Europe. New Brunswick, NJ & London: Rutgers University Press.Google Scholar
Hoffecker, JF. 2017. Modern humans: their African origin and global dispersal. New York: Columbia University Press.CrossRefGoogle Scholar
Jackson, M, Watson, PH, Halliday, WC, Mantsch, HH. 1995. Beware of connective tissue proteins: assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochimica et Biophysica Acta – Molecular Basis of Disease 1270(1):16.CrossRefGoogle ScholarPubMed
Kaverzneva, ED. 2004. The characteristic of the station Sungir’ cultural deposit with the regard for the permafrost deformations. Rossiiskaya Arkheologiya 3:519. In Russian with English abstract.Google Scholar
Kontopoulos, I, Penkman, K, Liritzis, I, Collins, MJ. 2019. Bone diagenesis in a Mycenaean secondary burial (Kastrouli, Greece). Archaeological and Anthropological Sciences 11(10):52135230.CrossRefGoogle Scholar
Kuzmin, YV. 2019. The older, the better? On the radiocarbon dating of Upper Palaeolithic burials in Northern Eurasia and beyond. Antiquity 93(370):10611071.CrossRefGoogle Scholar
Kuzmin, YV, Burr, GS, Jull, AJT, Sulerzhitsky, LD. 2004. AMS 14C age of the Upper Palaeolithic skeletons from Sungir site, Central Russian Plain. Nuclear Instruments and Methods in Physics Research B 223–224:731734.CrossRefGoogle Scholar
Kuzmin, YV, Fiedel, SJ, Street, M, Reimer, PJ, Boudin, M, van der Plicht, J, Panov, VS, Hodgins, GWL. 2018. A laboratory inter-comparison of AMS 14C dating of bones of the Miesenheim IV elk (Rhineland, Germany) and its implications for the date of the Laacher See eruption. Quaternary Geochronology 48:716.CrossRefGoogle Scholar
Kuzmin, YV, Keates, SG. 2014. Direct radiocarbon dating of Late Pleistocene hominids in Eurasia: current status, problems, and perspectives. Radiocarbon 56(2):753766.CrossRefGoogle Scholar
Kuzmin, YV, van der Plicht, J, Sulerzhitsky, LD. 2014. Puzzling radiocarbon dates for the Upper Paleolithic site of Sungir (central Russian Plain). Radiocarbon 56(2):451459.CrossRefGoogle Scholar
Lebon, M, Zazzo, A, Reiche, I. 2014. Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeography, Palaeoclimatology, Palaeoecology 416:110119.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.CrossRefGoogle ScholarPubMed
Marom, A, McCullagh, JSO, Higham, TFG, Sinitsyn, AA, Hedges, REM. 2012. Single amino acid radiocarbon dating of Upper Paleolithic modern humans. Proceedings of the National Academy of Science of the USA 109(18):68786881.CrossRefGoogle ScholarPubMed
Morris, MD, Finney, WF. 2004. Recent developments in Raman and infrared spectroscopy and imaging of bone tissue. Journal of Spectroscopy 18:155159.CrossRefGoogle Scholar
Muyonga, JH, Cole, CGB, Duodu, KG. 2004. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry 86(3):325332.CrossRefGoogle Scholar
Nalawade-Chavan, S, McCullagh, J, Hedges, R. 2014. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm Early Mid Upper Palaeolithic burials in Eurasia. PLoS ONE 9(1):e76896.CrossRefGoogle ScholarPubMed
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Honstrup, KM, Thraned, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.CrossRefGoogle Scholar
Pettitt, P. 2011. The Palaeolithic origins of human burial. London & New York: Routledge.Google Scholar
Pettitt, P. 2019. Fast and slow science and the Palaeolithic dating game. Antiquity 93(370):10761078.CrossRefGoogle Scholar
Pettitt, PB, Bader, NO. 2000. Direct AMS radiocarbon dates for the Sungir mid Upper Palaeolithic burials. Antiquity 74(284):269270.CrossRefGoogle Scholar
Rasmussen, SO, Bigler, M, Blockley, SP, Blunier, T, Buchardt, SL, Clausen, HB, Cvijanovic, I, Dahl-Jensen, D, Hohnsen, SJ, Fischer, H, Gkinis, V, Guillevic, M, Hoek, WZ, Lowe, JJ, Pedro, JB, Popp, T, Seierstad, IK, Steffensen, JP, Svennson, AM, Vallelonga, P, Vinther, BM, Walker, MJC, Wheatley, JJ, Winstrup, M. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106:1428.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10291058.Google Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Richards, MP. 2009. Stable isotope evidence for European Upper Paleolithic human diets. In: Hublin, J-J, Richards, MP, editors. The evolution of hominin diet: integrating approaches to the study of Palaeolithic subsistence. Dordrecht: Springer. p. 251257.CrossRefGoogle Scholar
Richards, MP, Trinkaus, E. 2009. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Science of the USA 106(38):1603416039.CrossRefGoogle ScholarPubMed
Richards, MP, Pettitt, PB, Stiner, MC, Trinkaus, E. 2001. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proceedings of the National Academy of Science of the USA 98(11):65286532.CrossRefGoogle ScholarPubMed
Sato, RK, McMillan, PF. 1987. An infrared and Raman study of the isotopic species of alpha-quartz. Journal of Physical Chemistry 91(13):34943498.CrossRefGoogle Scholar
Schellmann, NC. 2007. Animal glues: a review of their key properties relevant to conservation. Studies in Conservation 52 (Supplement 1):5566.CrossRefGoogle Scholar
Seguin-Orlando, A, Korneliussen, TS, Sikora, M, Malaspinas, A-S, Manica, A, Moltke, I, Albrechtsen, A, Ko, A, Margaryan, A, Moiseyev, V, Goebel, T, Westaway, M, Lambert, D, Khartanovich, V, Wall, JD, Nigst, PR, Foley, RA, Lahr, MM, Nielsen, R, Orlando, L, Willerslev, E. 2014. Genomic structure in Europeans dating back at least 36,200 years. Science 356(6213):11131118.CrossRefGoogle Scholar
Seleznev, AB. 2004. Stoyanka Sungir: voprosy organizatsii zhilogo prostranstva. Moscow: Taus Publishers. In Russian.Google Scholar
Sikora, M, Seguin-Orlando, A, Sousa, VC, Albrechtsen, A, Korneliussen, T, Ko, A, Rasmussen, S, Dupanloup, I, Nigst, PR, Bosch, MD, Renaud, G, Allentoft, ME, Margaryan, A, Vasilyev, SV, Veselovskaya, EV, Borutskaya, SB, Deviese, T, Comeskey, D, Higham, T, Manica, A, Foley, R, Meltzer, DJ, Nielsen, R, Excoffier, L, Lahr, MM, Orlando, L, Willerslev, E. 2017. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358(6363):659662.CrossRefGoogle ScholarPubMed
Soldatova, T. 2019. Spatial distribution and problems in the interpretation of radiocarbon dates of the Sungir site, Russia. Radiocarbon 61(4):e1e15.CrossRefGoogle Scholar
Stafford, TW Jr, Jull, AJT, Brendel, K, Duhamel, RC, Donahue, D. 1987. Study of bone radiocarbon dating accuracy at the University of Arizona NSF Accelerator Facility for radioisotope analysis. Radiocarbon 29(1):2444.CrossRefGoogle Scholar
Stafford, TW Jr, Brendel, K, Duhamel, RC. 1988. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochimica et Cosmochima Acta 52(9):22572267.CrossRefGoogle Scholar
Stafford, TW Jr, Hare, PE, Currie, L, Jull, AJT, Donahue, DJ. 1991. Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18(1):3572.CrossRefGoogle Scholar
Stulova, DI. 2021. Accumulations of archaeological remains in excavation area 3 of the Sunghir site. Zapiski IIMK RAN 24:4251. In Russian with English abstract.Google Scholar
Trinkaus, E, Soficaru, A, Doboş, A, Constantin, S, Zilhão, J, Richards, M. 2009. Stable isotope evidence for early modern human diet in Southeastern Europe: Peştera cu Oase, Peştera Muierii and Peştera Cioclovina Uscată. Materiale si Cercetări Arheologice (serie nouă) V:5–14.Google Scholar
Trinkaus, E, Buzhilova, AP, Mednikova, MB, Dobrovolskaya, MV, editors. 2014. The people of Sunghir: burials, bodies, and behavior in the earlier Upper Paleolithic. New York: Oxford University Press.CrossRefGoogle Scholar
Trinkaus, E, Buzhilova, AP, Mednikova, MB, Dobrovolskaya, MV. 2015. The age of the Sunghir Upper Paleolithic human burials. Anthropologie 53(1/2):221231.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.CrossRefGoogle Scholar
Van Meerbeeck, CJ, Renssen, H, Roche, DM. 2009. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations. Climate of the Past 5(1):3351.CrossRefGoogle Scholar
Vasil’ev, S, Sinitsyn, A, Otte, M, editors. 2017. Le Sungirien (ERAUL, Etudes et Recherches Archéologiques de l’Université de Liège, vol. 147). Liège: Université de Liège.Google Scholar
Wacker, L, Christl, M, Synal, H-A. 2010. BATS: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976979.CrossRefGoogle Scholar
Wei, S., Pintus, V, Schreiner, M. 2012. Photochemical degradation study of polyvinyl acetate paints used in artworks by Py–GC/MS. Journal of Analytical and Applied Pyrolysis 97:158163.CrossRefGoogle ScholarPubMed
Wojcieszak, M, den Brande, TV, Ligovich, G, Boudin, M. 2020. Pretreatment protocols performed at the Royal Institute for Cultural Heritage (RICH) prior to AMS 14C measurements. Radiocarbon 62(5):e14e25.CrossRefGoogle Scholar
Zaretskaya, NE, Gavrilov, KN, Panin, AV, Nechushkin, RI. 2018. Geochronological data and the archaeological ideas about the duration of the major Eastern Gravettian sites on the Russian Plain. Rossiiskaya Arkheologiya 1:316. In Russian with English abstract.Google Scholar
Supplementary material: PDF

Kuzmin et al. supplementary material

Kuzmin et al. supplementary material

Download Kuzmin et al. supplementary material(PDF)
PDF 3.5 MB