Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T05:03:44.253Z Has data issue: false hasContentIssue false

Temporal and Spatial Variations of Atmospheric Radiocarbon in the Mexico City Metropolitan Area

Published online by Cambridge University Press:  09 February 2016

Laura Beramendi-Orosco*
Affiliation:
Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510, Mexico
Galia Gonzalez-Hernandez
Affiliation:
Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510, Mexico
Adriana Martinez-Jurado
Affiliation:
Posgrado en Ciencias Biológicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510, Mexico
Angeles Martinez-Reyes
Affiliation:
Posgrado en Ciencias Biológicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510, Mexico
Alfonso Garcia-Samano
Affiliation:
Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510, Mexico
Jose Villanueva-Diaz
Affiliation:
Laboratorio Nacional de Dendrocronologia, Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, Gomez Palacio, Durango, Apdo Postal 41, Mexico
Francisco Javier Santos-Arevalo
Affiliation:
Centro Nacional de Aceleradores (CNA), Avda. Thomas Alva Edison 7, Isla de la Cartuja, Seville 41092, Spain
Isabel Gomez-Martinez
Affiliation:
Centro Nacional de Aceleradores (CNA), Avda. Thomas Alva Edison 7, Isla de la Cartuja, Seville 41092, Spain
Omar Amador-Muñoz
Affiliation:
Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510, Mexico
*
Corresponding author. Email: laurab@geologia.unam.mx.

Abstract

The Mexico City Metropolitan Area (MCMA) produces a complex mixture of gases and aerosols from diverse sources, including burning of fossil fuels, biomass, and wastes, with a significant biogenic contribution. We present the first results of ongoing projects to study temporal and spatial variations of 14CO2 in the area. Temporal variations reconstructed from tree rings of Taxodium mucronatum indicate a considerable radiocarbon depletion, in accordance to the vast amount of fossil fuels burnt inside Mexico Valley, with values between 62 and 246‰ lower than background values for the 1962–1968 period, and lower by 51–88‰ for the 1983–2010 period. The lower dilution found for the last decades might indicate an increase in enriched 14CO2 sources. Results from the spatial distribution, as revealed from integrated CO2 samples and grasses from six points within the MCMA collected during the 2013 dry season, show variations between sites and sample types. For integrated CO2 samples, values range from 35.6‰ to 54.0‰, and for grasses between −86.8‰ and 40.7‰. For three of the sampling points, the grasses are significantly depleted, by up to ∼133‰, as compared to the corresponding integrated CO2 sample. This may result from differences in the carbon assimilation period and exposure to different CO2 sources. Higher-than-background Δ14C values were found for all integrated CO2 samples, presumably resulting from 14C-enriched CO2 derived from forest fires in the mountains during the sampling period. Results obtained so far confirm the complexity of the 14C cycle in the MCMA.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amador-Muñoz, O, Bazán-Torija, S, Villa-Ferreira, SA, Villalobos-Pietrini, R, Bravo-Cabrera, JL, Munive-Colín, Z, Hernández-Mena, L, Saldarriaga-Noreña, H, Murillo-Tovar, MA. 2013. Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10, health risk and sources in southwest Mexico City. Atmospheric Research 122:199212.CrossRefGoogle Scholar
Beramendi-Orosco, LE, González-Hernández, G, Urrutia-Fucugauchi, J, Morton-Bermea, O. 2006. The Radiocarbon Laboratory at the National Autonomous University of Mexico: first set of samples and new 14C internal reference material with an activity of 80.4 pMC. Radiocarbon 48(3):485–91.CrossRefGoogle Scholar
Beramendi-Orosco, LE, Gonzalez-Hernandez, G, Villanueva-Diaz, J, Santos-Arevalo, FJ, Gomez-Martinez, I, Cienfuegos-Alvarado, E, Morales-Puente, P, Urrutia-Fucugauchi, J. 2010. Modern radiocarbon levels for northwestern Mexico derived from tree rings—a comparison with Northern Hemisphere zones 2 and 3 curves. Radiocarbon 52(2–3):907–14.CrossRefGoogle Scholar
Bozhinova, D, Combe, M, Palstra, SWL, Meijer, HAJ, Krol, MC, Peters, W. 2013. The importance of crop growth modeling to interpret the Δ14CO2 signature of annual plants. Global Biogeochemical Cycles 27(3):792803.Google Scholar
Bravo, JL, Amador-Muñoz, O, Villalobos-Pietrini, R, Muhlia, A. 2006. Influence of some meteorological parameters and forest fires on PM10 concentrations in a Southwest zone of Mexico Valley. International Journal of Environment and Pollution 26(1–3):142–55.CrossRefGoogle Scholar
CONAFOR (Comisión Nacional Forestal). 2014. Reporte semanal de resultados de incendios fore-stales 2013. http://www.conafor.gob.mx:8080/documentos/docs/10/4215Reporte%20Semanal%202013%20-%20Incendios%20Forestales.pdf. Accessed September 2014.Google Scholar
Escamilla-Herrera, I, Santos-Cerquera, C. 2012. La Zona Metropolitana del Valle de México: transformación urbano-rural en la región Centro de México. In: XXII Coloquio Internacional de Geocrítica, Bogota, Colombia, 7–11 May 2012.Google Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117:D02303.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273–98.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):2059–72.CrossRefGoogle Scholar
INECC (Instituto Nacional de Ecología y Cambio Climático). 2012. Primer catálogo de estaciones de monitoreo atmosférico en México. http://www2.inecc.gob.mx/publicaciones/consultaPublicacion.html?id_pub=681. Accessed January 2015.Google Scholar
INEGI (Instituto Nacional de Estadística). 2014. México en cifras. http://www3.inegi.org.mx/sistemas/mexicocifras/. Accessed October 2014.Google Scholar
Jauregui, E. 2004. Impact of land-use changes on the climate of the Mexico City Region. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM 55:4660.Google Scholar
Kuc, T, Rozanski, K, Zimnoch, M, Necki, J, Chmura, V, Jelen, D. 2007. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central Europe: long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49(2):807–16.CrossRefGoogle Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Munnich, KO, Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. Radiocarbon 22(2):379–91.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.CrossRefGoogle ScholarPubMed
Magaña, VO, Vázquez, JL, Pérez, JL, Pérez, JB. 2003. Impact of El Niño on precipitation in Mexico. Geofísica Internacional 42(3):313–30.Google Scholar
Molina, LT, Madronich, S, Gaffney, JS, Apel, E, de Foy, B, Fast, J, Ferrare, R, Herndon, S, Jimenez, JL, Lamb, B, Osornio-Vargas, AR, Russell, P, Schauer, JJ, Stevens, PS, Volkamer, R, Zavala, M. 2010. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmospheric Chemistry and Physics 10:8697–760.Google Scholar
Molnár, M, Haszpra, L, Svingor, É, Major, I, Svetlik, I. 2010. Atmospheric fossil fuel CO2 measurement using a field unit in a central European city during the winter of 2008/09. Radiocarbon 52(2–3):835–45.CrossRefGoogle Scholar
Povinec, P, Šivo, A, Chudý, M, Burchuladze, AA, Pagava, SV, Togonidze, GI, Eristavi, IV. 1986. Seasonal variations of anthropogenic radiocarbon in the atmosphere. Nuclear Instruments and Methods in Physics Research B 17(5–6):556–9.CrossRefGoogle Scholar
Ramdahl, T. 1983. Retene—a molecular marker of wood combustion in ambient air. Nature 306(5943):580–2.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):1299–304.Google Scholar
SEDEMA (Secretaría del Medio Ambiente de la Ciudad de México). 2013. Inventario de emisiones contaminantes y de efecto invernadero de la Zona Metropolitana del Valle de México 2012. http://www.sedema.df.gob.mx/flippingbook/inventario-emisioneszmvm2012/. Accessed November 2014.Google Scholar
Stahle, DW, Villanueva-Diaz, J, Burnette, DJ, Cerano-Paredes, J, Heim, RR, Fye, FK, Acuña-Soto, R, Therrell, MD, Cleaveland, MK, Stahle, DK. 2011. Major Mesoamerican droughts of the past millennium. Geophysical Research Letters 38(5):L05703.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods B 259(1):713.Google Scholar
Takahashi, HA, Konohira, E, Hiyama, T, Minami, M, Nakamura, T, Yoshida, N. 2002. Diurnal variation of CO2 concentration, Δ14C and δ13C in an urban forest: estimate of the anthropogenic and biogenic CO2 contributions. Tellus B 54(2):97109.Google Scholar
Turnbull, JC, Miller, JB, Lehman, SJ, Tans, PP, Sparks, RJ, Southon, J. 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophysical Research Letters 33:L01817.Google Scholar
Turnbull, JC, Keller, ED, Baisden, T, Brailsford, G, Bromley, T, Norris, M, Zondervan, A. 2014. Atmospheric measurement of point source fossil CO2 emissions. Atmospheric Chemistry and Physics 14:5001–14.Google Scholar
Vay, SA, Tyler, SC, Choi, Y, Blake, DR, Blake, NJ, Sachse, GW, Diskin, GS, Singh, HB. 2009. Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity. Atmospheric Chemistry and Physics 9:4973–85.Google Scholar
Villanueva-Díaz, J, Stahle, DW, Therrel, MD, Cleaveland, MK, Morfín, F Camacho, de la Fuente, P Núñez Díaz, Chávez, S Gómez, Sesma, J Sánchez, García, J A Ramírez. 2003. Registros climáticos de los ahuehuetes de Chapultepec en los últimos 450 años. Boletín del Archivo Histórico del Agua 23:3443.Google Scholar
Wacker, L, Nemeç, M, Bourquin, J. 2010a. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931–4.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, H-A. 2010b. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976–9.CrossRefGoogle Scholar
Zhou, W, Wu, S, Huo, W, Xiong, X, Cheng, P, Lu, X, Niu, Z. 2014. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China. Atmospheric Environment 94:538–45.CrossRefGoogle Scholar