Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T07:36:45.709Z Has data issue: false hasContentIssue false

Use of 10Be to Predict Atmospheric 14C Variations during the Laschamp Excursion: High Sensitivity to Cosmogenic Isotope Production Calculations

Published online by Cambridge University Press:  26 July 2016

Alexandre Cauquoin*
Affiliation:
Laboratoire du Climat et de l'Environnement/Institut Pierre Simon Laplace (LSCE/IPSL CEA-CNRS-UVSQ), Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette, France
Grant Raisbeck
Affiliation:
Laboratoire du Climat et de l'Environnement/Institut Pierre Simon Laplace (LSCE/IPSL CEA-CNRS-UVSQ), Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette, France Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), UMR CNRS 8609, Université Paris-Sud XI, Bât 108, 91405 Orsay, France
Jean Jouzel
Affiliation:
Laboratoire du Climat et de l'Environnement/Institut Pierre Simon Laplace (LSCE/IPSL CEA-CNRS-UVSQ), Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette, France
Didier Paillard
Affiliation:
Laboratoire du Climat et de l'Environnement/Institut Pierre Simon Laplace (LSCE/IPSL CEA-CNRS-UVSQ), Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette, France

Abstract

The Laschamp excursion is a period of reduced geomagnetic field intensity occurring 40.7 ± 1.0 kyr ago. As a consequence, cosmogenic isotope production increased dramatically and its sensitivity to solar activity was enhanced during this period. The latter occurs because a larger fraction of the lower-energy interstellar galactic cosmic-ray particles, normally excluded by the geomagnetic field, is able to reach Earth's atmosphere. This produces a cosmogenic isotope production signal with a significant structure. As high-resolution 10Be profiles from both Antarctica (EDC) and Greenland (NGRIP-GRIP) during this crucial period are now available, one can use them as input into a box carbon cycle model in order to predict atmospheric 14C variations due to the Laschamp excursion. For this purpose, 10Be data are converted into 14C, using production calculations for the 10Be-14C conversion, after correction for the estimated difference of sensitivity between polar and global 10Be deposition. Several scenarios of carbon cycle state are simulated, from preindustrial to glacial conditions. Applying two recent cosmogenic isotope production calculations for the 10Be to 14C conversion, we found that the resulting atmospheric Δ14C variations are very sensitive to which of these two are employed. For example, Δ14C amplitude under glacial conditions varies from 260‰ (EDC) and 320‰ (Greenland) to 430‰ (EDC) and 510‰ (Greenland) depending on the formulation used for 10Be-14C conversion.

Type
Articles
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E, Raisbeck, GM, Yiou, F, Jouzel, J. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth and Planetary Science Letters 150(3–4):453–62.Google Scholar
Baroni, M, Bard, E, Petit, JR, Magand, O, Bourlès, D. 2011. Volcanic and solar activity, and atmospheric circulation influences on cosmogenic 10Be fallout at Vostok and Concordia (Antarctica) over the last 60 years. Geochimica et Cosmochimica Acta 75(22):7132–45.Google Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Hererra-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292(5526):2453–8.Google Scholar
Beer, J, Blinov, A, Bonani, G, Finkel, RC, Hofmann, HJ, Lehmann, B, Oeschger, H, Sigg, A, Schwander, J, Staffelbach, T, Stauffer, B, Suter, M, Wölfli, W. 1990. Use of 10Be in polar ice to trace the 11–year cycle of solar activity. Nature 347(6289):164–6.Google Scholar
Beer, J, Siegenthaler, U, Bonani, G, Finkel, RC, Oeschger, H, Suter, M, Wölfli, W. 1988. Information on past solar activity and geomagnetism from 10Be in the camp Century ice core. Nature 331(6158):675–9.Google Scholar
Broecker, WS, Peng, T-H. 1986. Carbon cycle: 1985 glacial to interglacial changes in the operation of the global carbon cycle. Radiocarbon 28(2A):309–27.Google Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338(6105):370–4.CrossRefGoogle ScholarPubMed
Castagnoli, G, Lal, D. 1980. Solar modulation effects in terrestrial production of carbon-14. Radiocarbon 22(2):133–58.Google Scholar
Delaygue, G, Bard, E. 2011. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Climate Dynamics 36(11–12):2201–18.Google Scholar
Elsasser, W, Ney, EP, Winckler, JR. 1956. Cosmic-ray intensity and geomagnetism. Nature 178(4544):1226–7.Google Scholar
EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–8.Google Scholar
EPICA Community Members. 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444(7116):195–8.Google Scholar
Fairbanks, RG, Mortlock, RA, Chiu, TC, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):1781–96.Google Scholar
Field, CV, Schmidt, GA, Koch, D, Salyk, C. 2006. Modeling production and climate-related impacts on 10Be concentration in ice cores. Journal of Geophysical Research 111:D15107, doi:10.1029/2005JD006410.CrossRefGoogle Scholar
Finkel, RC, Nishiizumi, K. 1997. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka. Journal of Geophysical Research 102(C12):26,699706.Google Scholar
Frank, M, Schwarz, B, Baumann, S, Kubik, PW, Suter, M, Mangini, A. 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth and Planetary Science Letters 149(1–4):121–9.Google Scholar
Heikkilä, U, Beer, J, Feichter, J. 2008. Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder Minimum using the ECHAM5-HAM General Circulation Model. Atmospheric Chemistry and Physics 8:2797–809.Google Scholar
Heikkilä, U, Beer, J, Feichter, J. 2009. Meridional transport and deposition of atmospheric 10Be. Atmospheric Chemistry and Physics 9:515–27.Google Scholar
Hoffmann, DL, Beck, JW, Richards, DA, Smart, PL, Singarayer, JS, Ketchmark, T, Hawkesworth, CJ. 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289(1–2):110.CrossRefGoogle Scholar
Horiuchi, K, Uchida, T, Sakamoto, Y, Ohta, A, Matsuzaki, H, Shibata, Y, Motoyama, H. 2008. Ice core record of 10Be over the past millennium from Dome Fuji, Antarctica: a new proxy record of past solar activity and a powerful tool for stratigraphic dating. Quaternary Geochronology 3(3):253–61.Google Scholar
Hughen, K, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202–7.Google Scholar
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23):3216–27.CrossRefGoogle Scholar
Indermühle, A, Monnin, E, Stauffer, B, Stocker, TF. 2000. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters 27(5):735–8.Google Scholar
Johnsen, SJ, Dahl-Jensen, D, Gundestrup, N, Steffensen, JP, Clausen, HB, Miller, H, Masson-Delmotte, V, Sveinbjörnsdottir, AE, White, J. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16(4):299307.CrossRefGoogle Scholar
Kovaltsov, GA, Usoskin, IG. 2010. A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere. Earth and Planetary Science Letters 291(1–4):182–8.Google Scholar
Kovaltsov, GA, Mishev, AL, Usoskin, IG. 2012. A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth and Planetary Science Letters 337–338:114–20.Google Scholar
Laj, C, Kissel, C, Mazaud, A, Michel, E, Muscheler, R, Beer, J. 2002. Geomagnetic field intensity, North Atlantic Deep Water circulation and atmospheric Δ14C during the last 50 kyr. Earth and Planetary Science Letters 200(1–2):177–90.Google Scholar
Laj, C, Kissel, C, Beer, J. 2004. High resolution global paleointensity stack since 75 kyr (GLOPIS-75) calibrated to absolute values. In: Channell, JET, Kent, DV, Lowrie, W, Meert, JG, editors. Timescales of the Paleomagnetic Field. Washington, DC: American Geophysical Union. p 255–65.Google Scholar
Lal, D, Peters, B. 1967. Cosmic ray produced radioactivity on the Earth. In: Sittle, K, editor. Handbuch der Physik. Volume 46/2. Berlin: Springer Verlag. p 551612.Google Scholar
Lisiecki, LE, Lisiecki, PA. 2002. Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography 17:1049, doi:10.1029/2001PA000733.Google Scholar
Masarik, J, Beer, J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere. Journal of Geophysical Research 104(D10):12,099111.CrossRefGoogle Scholar
Masarik, J, Beer, J. 2009. An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere. Journal of Geophysical Research 114:D11103, doi:10.1029/2008JD010557.Google Scholar
Mazaud, A, Laj, C, Bender, M. 1994. A geomagnetic chronology for antarctic ice accumulation. Geophysical Research Letters 21(5):337–40.CrossRefGoogle Scholar
Ménabréaz, L, Thouveny, N, Bourlès, DL, Hamelin, B, Demory, F. 2011. The Laschamp geomagnetic dipole low expressed as a cosmogenic 10Be atmospheric overproduction at ∼41 ka. Earth and Planetary Science Letters 312(3–4):305–17.CrossRefGoogle Scholar
Muscheler, R, Beer, J, Wagner, G, Laj, C, Kissel, C, Raisbeck, GM, Yiou, F, Kubik, PW. 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth and Planetary Science Letters 219(3–4):325–40.Google Scholar
Muscheler, R, Beer, J, Kubik, PW, Synal, H-A. 2005. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quaternary Science Reviews 24(16–17):1849–60.Google Scholar
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1:263–7.CrossRefGoogle Scholar
Nilsson, A, Muscheler, R, Snowball, I, Aldahan, A, Possnert, G, Augustinus, P, Atkin, D, Stephens, T. 2011. Multi-proxy identification of the Laschamp geomagnetic field excursion in Lake Pupuke, New Zealand. Earth and Planetary Science Letters 311(1–2):155–64.Google Scholar
Paillard, D. 1995. Modèles simplifiés pour l'étude de la variabilité de la circulation thermohaline au cours des cycles glaciaire-interglaciaire [PhD thesis]. Université Paris XI.Google Scholar
Paillard, D, Labeyrie, L, Yiou, P. 1996. Macintosh program performs time-series analysis. Eos Transactions AGU 77(39):379.CrossRefGoogle Scholar
Raisbeck, GM, Yiou, F, Fruneau, M, Loiseaux, JM, Lieuvin, M, Ravel, JC. 1981. Cosmogenic 10Be/7Be as a probe of atmospheric transport processes. Geophysical Research Letters 8(9):1015–8.Google Scholar
Raisbeck, GM, Yiou, F, Bourles, D, Kent, DV. 1985. Evidence for an increase in cosmogenic 10Be during a geomagnetic reversal. Nature 315(6017):315–7.Google Scholar
Raisbeck, GM, Yiou, F, Jouzel, J, Petit, JR. 1990. 10Be and δ2H in polar ice cores as a probe of the solar variability's influence on climate. Philosophical Transactions of the Royal Society of London A 330:463–70.Google Scholar
Raisbeck, GM, Yiou, F, Jouzel, J, Petit, JR, Barkov, NI, Bard, E. 1992. 10Be deposition at Vostok, Antarctica during the last 50,000 years and its relationship to possible cosmogenic production variations during this period. In: Bard, E, Broecker, WS, editors. The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series 12. Berlin: Springer. p 127–39.Google Scholar
Raisbeck, GM, Yiou, F, Jouzel, J, Stocker, TF. 2007. Direct north-south synchronization of abrupt climate change record in ice cores using Beryllium 10. Climate of the Past 3:541–7.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–87.Google Scholar
Robinson, C, Raisbeck, GM, Yiou, F, Lehman, B, Laj, C. 1995. The relationship between 10Be and geomagnetic field strength records in central North Atlantic sediments during the last 80 ka. Earth and Planetary Science Letters 136(3–4):551–7.Google Scholar
Siegenthaler, U, Heimann, M, Oeschger, H. 1980. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22(2):177–91.Google Scholar
Singer, BS, Guillou, H, Jicha, BR, Laj, C, Kissel, C, Beard, BL, Johnson, CM. 2009. 40Ar/39Ar, K-Ar and 230Th-238U dating of the Laschamp excursion: a radioisotopic tie-point for ice core and climate chronology. Earth and Planetary Science Letters 286(1–2):80–8.Google Scholar
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, SM, Johnsen, SJ, Muscheler, R, Parrenin, F, Rasmussen, SO, Röthlisberger, R, Seierstad, I, Steffensen, JP, Vinther, BM. 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4:4757.Google Scholar
Turney, CSM, Fifield, LK, Hogg, AG, Palmer, G, Hughen, K, Baillie, MGL, Galbraith, R, Ogden, J, Lorrey, A, Tims, SG, Jones, RT. 2010. The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the Last Glacial Interval (60,000–11,700 years ago). Quaternary Science Reviews 29(27–28):3677–82.Google Scholar
Usoskin, IG, Alanko-Huotari, K, Kovaltsov, GA, Mursula, K. 2005. Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. Journal of Geophysical Research 110:A12108, doi:10.1029/2005JA011250.Google Scholar
Wagner, G, Masarik, J, Beer, J, Baumgartner, S, Imboden, D, Kubik, PW, Synal, H-A, Suter, M. 2000. Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core. Nuclear Instruments and Methods in Physics Research B 172(1–4):597604.Google Scholar
Wagner, G, Beer, J, Masarik, J, Muscheler, R, Kubik, PW, Mende, W, Laj, C, Raisbeck, GM, Yiou, F. 2001. Presence of the solar de Vries cycle (∼205 years) during the last ice age. Geophysical Research Letters 28(2):303–6.Google Scholar
Webber, WR, Higbie, PR. 2003. Production of cosmogenic Be nuclei in the Earth's atmosphere by cosmic rays: its dependence on solar modulation and the interstellar cosmic ray spectrum. Journal of Geophysical Research 108:1355, doi:10.1029/2003JA009863.Google Scholar
Yiou, F, Raisbeck, GM, Bourles, D, Lorius, C, Barkov, NI. 1985. 10Be in ice at Vostok Antarctica during the last climatic cycle. Nature 316(6029):616–7.Google Scholar
Yiou, F, Raisbeck, GM, Baumgartner, S, Beer, J, Hammer, C, Johnsen, S, Jouzel, J, Kubik, PW, Lestringuez, J, Stiévenard, M, Suter, M, Yiou, P. 1997. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. Journal of Geophysical Research 102(C12):26,78394.Google Scholar