Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T21:52:18.018Z Has data issue: false hasContentIssue false

Heavy metals in sediment profiles from Sepetiba and Ribeira Bays: A comparative study

Published online by Cambridge University Press:  06 June 2009

F. de Carvalho Gomes
Affiliation:
Programa de Engenharia Nuclear, COPPE/UFRJ, Cidade Universitária, Caixa Postal 68.509, 21945-970 Rio de Janeiro, Brazil
J. M. Godoy
Affiliation:
Instituto de Radioproteção e Dosimetria (IRD), Caixa Postal 37750, Barra da Tijuca, 22642-970 Rio de Janeiro, Brazil Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, 22453-900 Rio de Janeiro, Brazil
M. L.D.P. Godoy
Affiliation:
Instituto de Radioproteção e Dosimetria (IRD), Caixa Postal 37750, Barra da Tijuca, 22642-970 Rio de Janeiro, Brazil
Z. L. de Carvalho
Affiliation:
Instituto de Radioproteção e Dosimetria (IRD), Caixa Postal 37750, Barra da Tijuca, 22642-970 Rio de Janeiro, Brazil
R. T. Lopes
Affiliation:
Programa de Engenharia Nuclear, COPPE/UFRJ, Cidade Universitária, Caixa Postal 68.509, 21945-970 Rio de Janeiro, Brazil
J.-A. Sanchez-Cabeza
Affiliation:
Marine Environment Laboratories Monaco, 4 Quai Antoine Premier, MC98000 Monaco, Principality of Monaco
L. D. de Lacerda
Affiliation:
Laboratório de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Ceará
J. C. Wasserman
Affiliation:
Dept. de Análise Geo-Ambiental, Instituto de Geociências – UFF, Niterói, RJ
Get access

Abstract

Three sediment cores were sampled at Sepetiba bay and four cores at Ribeira bay, Rio de Janeiro State, Brazil. Sedimentation rates were determined applying 210Pb dating. In the Ribeira Bay, the sedimentation rate increases in the direction from sampling point RB1 (0.15 cm y-1), in the inner part of the bay, to 0.34 cm y-1 in the sampling point RB4, close to its entrance. For the Sepetiba Bay, two sedimentation rates were observed: a lower rate of 0.3 cm y-1, for the period before the 60's, and a more recent rate of 0.75 cm y-1. These findings agree with the construction of the Santa Cecília impoundment (1955) that brings water from the Paraíba do Sul Basin into the Guandu River, increasing its flow from the original 20 m3 s-1 to 160 m3 s-1. In order to determine the elemental concentrations, aliquot from the SB1 and RB4 cores were taken, totally dissolved and analyzed by ICP-MS. The hypothesis that Ribeira Bay could constitute a reference database for metal concentrations in the neighboring Sepetiba Bay is valid for several elements as K, Ti, Mn, Zn, Ga, Rb, Sr among others, but it isn't for other elements as V, Cr and Cd. Applying to the mean elemental concentration, of the upper contaminated 45 cm sediment layer, and to the elemental concentration of the deepest analyzed sediment layer a normalization to iron, a double ratio was calculated and it was concluded that the Sepetiba Bay sediments are, particularly, contaminated with Cr, may be, from a leather tanning plant existing in this region and Cd and Zn from the former Ingá Metais.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cardoso, A.G.A., Boaventura, G.R., Silva-Filho, E.V. and Brod, J.A., J. Braz. Chem. Soc. 6 (2001) 767–774.
Pellegati, F., Figueiredo, A.M.G. and Wasserman, J.C., Geostand. Newsl. 25 (2001) 307–315. CrossRef
Wasserman, J.C., Figueiredo, A.M.G., Pellegati, F. and Silva-Filho, E.V., J. Geochem. Explor. 72 (2001) 129–146. CrossRef
Marques Jr., A.N., Monna, F., Silva-Filho, E.M., Fernex, F.E. and Simões Filho, F.F.L., Mar. Pollut. Bul. 52 (2006) 532–539. CrossRef
Magalhães, V.F., Carvalho, C.E.V. and Pfeiffer, W.C., Water, Air, Soil Pollut. 129 (2001) 83–90. CrossRef
Barcellos, C., Lacerda, L.D. and Ceradini, Environ. Geol. 32 (1997) 203–209. CrossRef
Leal Neto, A.C., Legey, L.F.L., González-Araya, M.C. and Jablonski, S., Environ. Manage. 38 (2006) 879–888. CrossRef
Cunha, C.L.N., Rossman, P.C.C., Ferreira, A.P. and Monteiro, T.C.N., Cont. Shelf Res. 26 (2006) 1940–1953. CrossRef
Godoy, J.M., In Manual of Physico-Chemical Analysis of Aquatic Sediments, Mudroch A., Azcue, J.M., Mudroch P. eds., CRC Lewis Publishers, 1997, p. 147–174.
Godoy, J.M., Moreira, I., Wanderley, W., Simões Filho, F.F.L. and Mozeto, A.A., Radiat. Prot. Dos. 75 (1998) 111–115. CrossRef
Godoy, M.L.D.P., Godoy, J.M., Roldão, L.A. and Conti, L.F.C., J. Braz. Chem. Soc. 15 (2004) 122–130. CrossRef
Appleby, P.G. and Oldfield, F. In Uranium-series Disequilibrium – Application to Earth, Marine and Environmental Sciences 2nd edition, Ivanovich, M., Harmon, R.S., eds.; Oxford Sciences Publ., 1992, p. 731.
Barbosa, A.A., Doctor Thesis, Departamento de Geoquímica, Universidade Federal Fluminense, Brazil, 2001, 114 pages.
Wedepohl, K.H., Geochim. Cosmochim. Acta 59 (1995) 1217–1232. CrossRef
Lacerda, L.D. and Molisani, M.M., Mar. Pollut. Bul. 52 (2006) 969–987. CrossRef
Molisani, M.M., Marins, R.V., Machado, W., Paraquetti, H.H.M., Bidone, E.D. and Lacerda, L.D., Reg. Environ. Change 4 (2004) 17–27. CrossRef