Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T00:26:38.393Z Has data issue: false hasContentIssue false

1.0957-Approximation Algorithm for Random MAX-3SAT

Published online by Cambridge University Press:  15 June 2007

Wenceslas Fernandez de la Vega
Affiliation:
CNRS, université Paris Sud, Orsay, France; lalo@lri.fr
Marek Karpinski
Affiliation:
Dept. of Computer Science, University of Bonn, Germany; marek@cs.uni-bonn.de
Get access

Abstract

We prove that MAX-3SAT can be approximated in polynomial time within a factor 1.0957 on random instances.

Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. Achioptas, Setting two variables at a time yields a new lower bound for random 3-SAT, in Proc. 32th STOC (2000) 28–37.
N. Alon and J. Spencer, The Probabilistic Method. Wiley (1992).
P. Beame, R. Karp, T. Pitassi and M. Saks, On the Complexity of Unsatisfiability Proofs for Random k-CNF Formulas, in Proc. 30th STOC (1998) 561–571.
O. Dubois, Y. Boufkhad and J. Mandler, Typical 3-SAT Formulae and the Satisfiability Threshold, in Proc. 11th ACM-SIAM SODA (2000) 126–127.
O. Dubois, R. Monasson, B. Selman and R. Zecchina, eds, Phase Transitions in Combinatorial problems, Theor. Comput. Sci. 265 (2001) Nos. 1–2.
J. Friedman, A. Goerdt, Recognizing more unsatisfiable random 3SAT instances efficiently, in Proc. 28th ICALP (2001) 310-321.
U. Feige, Relations between Average Case Complexity and Approximation Complexity, in Proc. 34th ACM STOC (2002) 534–543
W. Fernandez de la Vega and Marek Karpinski, 9/8 Approximation Algorithm for Random MAX-3SAT, ECCC tracts, TR02-070, Dec. 13 (2002). Revision accepted Jan. 10 (2003)
Friedgut, E., Necessary and sufficient conditions for sharp thresholds of graph properties and the k-SAT problem. J. Amer. Math. Soc. 12 (1999) 10171054. CrossRef
A. Frieze and S. Suen, Analysis of Two Simple Heuristics of a Random Instance of k-SAT, J. Algorithms 20 (1996) 312–355.
J. Gu, P.W. Purdom, J. Franco and B.J. Wah, Algorithms for the satisfiability (SAT) problem: A Survey, in Satisfiability (SAT) Problem, DIMACS, American Mathematical Society (1997) 19–151.
J. Håstad, Some optimal innasproximability results, in Proc. 29th ACM STOC (1997) 1–10.
Hoeffding, W., Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1964) 1330. CrossRef
Y. Interian, Approximation Algorithm for Random MAX-kSAT, in International Conference on the Theory and Applications of Satisfiability testing (2004).
El Maftouhi, A. and Fernandez de, W. la Vega, In Random 3-SAT. Combin. Probab. Comput. 4 (1995) 189195. CrossRef